Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phytomedicine ; 133: 155924, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098169

RESUMEN

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a critical stage in the progression of non-alcoholic fatty liver disease (NAFLD), characterized by obvious inflammation and fibrosis. Because of its high incidence rate and serious consequences, NASH is becoming a global health problem. The influence of endotoxin translocation on NASH is receiving attention. As a traditional Chinese herb that effectively improves hepatic inflammation, Fructus Aurantii (Quzhou origin, FAQ) is widely used in the clinical treatment of NASH. However, the intervention mechanism of FAQ on reg3g and related endotoxin translocation remains unclear. AIM: To study the mechanism of the impact by which ileal regenerating family member 3 gamma (reg3g) deficiency and subsequent endotoxin translocation impact the progression of NASH; To elucidate the efficacy and mechanism of FAQ in the treatment of NASH. METHODS: Clinical serum, ileal tissue, and dynamic NASH model-related analyses collectively confirmed that reg3g is a pivotal gene associated with NASH. Reg3g-/- mice were used to assess the impact of reg3g on liver injury, inflammation, and fibrosis, as well as the underlying mechanism involved. In vitro studies elucidated the regulatory effects of FAQ on reg3g, intestinal barrier function, and intestinal permeability. Subsequently, the efficacy of FAQ was investigated in NASH mouse models. Pathological examinations combined with Western blotting (WB), immunohistochemistry (IHC), and multiplex immunohistochemical (mIHC) analyses were used to evaluate the effects of FAQ on mucosal repair and barrier function. Transepithelial electrical resistance (TEER), fluorescein isothiocyanate-dextran 4 (FD-4) experiments, coupled with enzyme linked immunosorbent assay (ELISA) and chromogenic LAL endotoxin assay were used to confirm intestinal permeability and endotoxin translocation. The results of WB and mIHC reflected the levels of endotoxin recruitment and M1 macrophage polarization in the liver. Parameters such as body weight, transaminases, and cholesterol were utilized to assess the metabolic effects of FAQ. RESULTS: Decreased expression of reg3g was associated with the progression of NASH. Ileal deficiency in reg3g resulted in damage to the intestinal barrier and permeability, leading to the recruitment of endotoxins via the 'gut-liver' axis to the liver, causing the polarization of M1 macrophages, release of inflammatory factors, excessive inflammation, and activation of hepatic stellate cells (HSCs), leading to fibrosis. FAQ significantly upregulated ileal reg3g expression and the expression of intestinal barrier-related proteins tight junction protein 1 (ZO-1) and occludin (OLCN) in mice (p < 0.05), thereby improving intestinal barrier function and permeability. Reduced intestinal permeability led to decreases in endotoxins entering the bloodstream and accumulating in the liver (p < 0.05). The expression of CD68 suggested reduced polarization of M1 macrophages. Expression levels of actin alpha 2, smooth muscle actin (α-SMA) and extracellular matrix (ECM)-related proteins also decreased, indicating improved liver fibrosis. CONCLUSION: FAQ ameliorates NASH by upregulating the expression of reg3g. The upregulation of reg3g contributes to the repair of the intestinal barrier and permeability, reducing the recruitment of endotoxins and subsequent polarization of M1 macrophages, excessive inflammation, and fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos , Íleon , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Proteínas Asociadas a Pancreatitis , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Animales , Ratones , Masculino , Humanos , Íleon/efectos de los fármacos , Íleon/metabolismo , Medicamentos Herbarios Chinos/farmacología , Modelos Animales de Enfermedad , Ratones Noqueados , Hígado/efectos de los fármacos , Hígado/metabolismo , Endotoxinas
2.
Soft Robot ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133138

RESUMEN

Many organisms move directly toward light for prey hunting or navigation, which is called phototaxis. Mimicking this behavior in robots is crucially important in the energy industry and environmental exploration. However, the phototaxis robots with rigid bodies and sensors still face challenges in adapting to unstructured environments, and the soft phototaxis robots often have high requirements for light sources with limited locomotion performance. Here, we report a 3.5 g soft microrobot that can perceive the azimuth angle of light sources and exhibit rapid phototaxis locomotion autonomously enabled by three-dimensional flexible optoelectronics and compliant shape memory alloy (SMA) actuators. The optoelectronics is assembled from a planar patterned flexible circuit with miniature photodetectors, introducing the self-occlusion to light, resulting in high sensing ability (error < 3.5°) compared with the planar counterpart. The actuator produces a straightening motion driven by an SMA wire and is then returned to a curled shape by a prestretched elastomer layer. The actuator exhibits rapid actuation within 0.1 s, a significant degree of deformation (curvature change of ∼87 m-1) and a blocking force of ∼0.4 N, which is 68 times its own weight. Finally, we demonstrated the robot is capable of autonomously crawling toward a moving light source in a hybrid aquatic-terrestrial environment without human intervention. We envision that our microrobot could be widely used in autonomous light tracking applications.

3.
Phytomedicine ; 130: 155767, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833789

RESUMEN

BACKGROUND: Due to its high incidence and elevated mortality, hepatocellular carcinoma (HCC) has emerged as a formidable global healthcare challenge. The intricate interplay between gender-specific disparities in both incidence and clinical outcomes has prompted a progressive recognition of the substantial influence exerted by estrogen and its corresponding receptors (ERs) upon HCC pathogenesis. Estrogen replacement therapy (ERT) emerged for the treatment of HCC by administering exogenous estrogen. However, the powerful side effects of estrogen, including the promotion of breast cancer and infertility, hinder the further application of ERT. Identifying effective therapeutic targets for estrogen and screening bioactive ingredients without E2-like side effects is of great significance for optimizing HCC ERT. METHODS: In this study, we employed an integrative approach, harnessing data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, clinical paraffin sections, adenoviral constructs as well as in vivo studies, to unveil the association between estrogen, estrogen receptor α (ESR1) and HCC. Leveraging methodologies encompassing molecular dynamics simulation and cellular thermal shift assay (CETSA) were used to confirm whether ESR1 is a molecular target of DHT. Multiple in vitro and in vivo experiments were used to identify whether i) ESR1 is a crucial gene that promotes DNA double-strand breaks (DSBs) and proliferation inhibition in HCC, ii) Dihydrotanshinone I (DHT), a quinonoid monomeric constituent derived from Salvia miltiorrhiza (Dan shen) exerts anti-HCC effects by regulating ESR1 and subsequent DSBs, iii) DHT has the potential to replace E2. RESULTS: DHT could target ESR1 and upregulate its expression in a concentration-dependent manner. This, in turn, leads to the downregulation of breast cancer type 1 susceptibility protein (BRCA1), a pivotal protein involved in the homologous recombination repair (HRR) process. The consequence of this downregulation is manifested through the induction of DSBs in HCC, subsequently precipitating a cascade of downstream events, including apoptosis and cell cycle arrest. Of particular significance is the comparative assessment of DHT and isodose estradiol treatments, which underscores DHT's excellent HCC-suppressive efficacy without concomitant perturbation of endogenous sex hormone homeostasis. CONCLUSION: Our findings not only confirm ESR1 as a therapeutic target in HCC management but also underscores DHT's role in upregulating ESR1 expression, thereby impeding the proliferation and invasive tendencies of HCC. In addition, we preliminarily identified DHT has the potential to emerge as an agent in optimizing HCC ERT through the substitution of E2.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Roturas del ADN de Doble Cadena , Receptor alfa de Estrógeno , Neoplasias Hepáticas , Fenantrenos , Carcinoma Hepatocelular/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Humanos , Proliferación Celular/efectos de los fármacos , Fenantrenos/farmacología , Animales , Roturas del ADN de Doble Cadena/efectos de los fármacos , Línea Celular Tumoral , Ratones Desnudos , Masculino , Apoptosis/efectos de los fármacos , Ratones , Células Hep G2 , Furanos , Quinonas
4.
Phytomedicine ; 118: 154944, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37393830

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) has become a global health issue owing to its large disease population and high morbidity. We previously reported that the improvement in oxidative stress (OS) using pure total flavonoids from citrus (PTFC), flavonoids isolated from the peel of Citrus changshan-huyou Y.B. Chan, is a crucial strategy for NAFLD treatment. However, OS-associated intervention pathways in NAFLD remain unclear. METHODS: In this study, we used microRNA (miR)- and mRNA-sequencing to identify the pathway by which PTFC improve OS in NAFLD. Clinical data, mimic/inhibitor assays, and a dual-luciferase reporter assay were selected to verify the regulatory relationships of this pathway. Moreover, in vivo and in vitro experiments were used to confime the regulatory effect of PTFC on this pathway. RESULTS: miR-seq, mRNA-seq, and bioinformatics analyses revealed that the miR-137-3p/neutrophil cytosolic factor 2 (NCF2, also known as NOXA2)/cytochrome b-245 beta chain (CYBB, also known as NOX2) pathway may be a target pathway for PTFC to improve OS and NAFLD. Additionally, bivariate logistic regression analysis combining the serum and clinical data of patients revealed NOX2 and NOXA2 as risk factors and total antioxidant capacity (indicator of OS level) as a protective factor for NAFLD. miR-137-3p mimic/inhibitor assays revealed that the upregulation of miR-137-3p is vital for improving cellular steatosis, OS, and inflammation. Dual-luciferase reporter assay confirmed that NOXA2 acts as an miR-137-3p sponge. These results co-determined that miR-137-3p/NOXA2/NOX2 is an essential pathway involved in NAFLD pathogenesis, including lipid accumulation, OS, and inflammation. In vivo and in vitro experiments further confirmed that the miR-137-3p/NOXA2/NOX2 pathway is regulated by PTFC. CONCLUSION: PTFC alleviates OS and inflammation in NAFLD by regulating the miR-137-3p/NOXA2/NOX2 pathway.


Asunto(s)
Citrus , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Flavonoides/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estrés Oxidativo , ARN Mensajero/metabolismo
5.
Front Pharmacol ; 14: 1093934, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843951

RESUMEN

San-Huang-Chai-Zhu formula (SHCZF), originates from Da-Huang-Xiao-Shi decoction (DHXSD) for the treatment of jaundice as recorded in the Chinese traditional Chinese medicine book Jin Gui Yao Lue. In the clinic, SHCZF has been used to treat cholestasis-related liver disease by improving intrahepatic cholestasis, but the treatment mechanism has not been elucidated. In this study, 24 Sprague-Dawley (SD) rats were randomly assigned to the normal, acute intrahepatic cholestasis (AIC), SHCZF, and ursodeoxycholic acid (UDCA) groups. In addition, 36 SD rats were divided into dynamic groups, namely, normal 24 h, AIC 24 h, normal 48 h, AIC 48 h, normal 72 h, and AIC 72 h groups. Alpha-naphthylisothiocyanate (ANIT) was used to induce an AIC rat model. Serum biochemical indices and hepatic pathology were detected. Part of the hepatic tissues was used for sequencing, and others were used for subsequent experiments. Sequencing data combined with bioinformatics analysis were used to screen target genes and identify the mechanisms of SHCZF in treating AIC rats. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB) were used to detect the RNA/Protein expression levels of screened genes. Rats in the dynamic group were used to determine the sequence of cholestasis and liver injury. High-performance liquid chromatography (HPLC) was used to determine the representative bioingredients of SHCZF. Sequencing and bioinformatics analysis suggested that IDI1 and SREBP2 are hub target genes of SHCZF to ameliorate ANTI-induced intrahepatic cholestasis in rats. The treatment mechanism is associated with the regulation of lipoprotein receptor (LDLr) to reduce cholesterol intake and 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR), and 3-Hydroxy-3-Methylglutaryl-CoA synthase 1 (HMGCS1) to decrease cholesterol synthesis. Animal experiments showed that SHCZF significantly reduced the expression levels of the above genes and proinflammatory cytokine lipocalin 2 (LCN2), inflammatory cytokines interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), thereby improving intrahepatic cholestasis and inflammation and liver injury.

6.
Front Med (Lausanne) ; 9: 771219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755070

RESUMEN

Background: The prevalence of NAFLD is increasing annually. The early diagnosis and control are crucial for the disease. Currently, metabolic indicators are always used clinically as an auxiliary diagnosis of NAFLD. However, the prevalence of NAFLD is not only increased in obese/metabolic-disordered populations. NAFLD patients with thin body are also increasing. Only using metabolic indicators to assist in the diagnosis of NAFLD may have some deficiencies. Continue to develop more clinical auxiliary diagnostic indicators is pressing. Methods: Machine learning methods are applied to capture risk factors for NAFLD in 365 adults from Zhejiang Province. Predictive models are constructed for NAFLD using fibrinolytic indicators and metabolic indicators as predictors respectively. Then the predictive effects are compared; ELISA kits were used to detect the blood indicators of non-NAFLD and NAFLD patients and compare the differences. Results: The prediction accuracy for NAFLD based on fibrinolytic indicators [Tissue Plasminogen Activator (TPA), Plasminogen Activator Inhibitor-1 (PAI-1)] is higher than that based on metabolic indicators. TPA and PAI-1 are more suitable than metabolic indicators to be selected to predict NAFLD. Conclusions: The fibrinolytic indicators have a stronger association with NAFLD than metabolic indicators. We should attach more importance to TPA and PAI-1, in addition to TC, HDL-C, LDL-C, and ALT/AST, when conducting blood tests to assess NAFLD.

7.
J Immunol Res ; 2022: 6588144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733920

RESUMEN

Shenqi pill (SQP), a famous traditional Chinese medicine (TCM) herbal formula derived from Jinguiyaolue (Synopsis of Prescriptions of the Golden Chamber), has long been used to treat kidney yang deficiency syndrome. According to the TCM treatment principle that the liver and kidney are homologies, the clinical use of SQP in the treatment of nonalcoholic steatohepatitis (NASH) has achieved a good effect. However, the active targeted genes and underlying mechanism remain unclear. In this study, we aimed to explore the treatment mechanism of SQP in NASH rats, which may further contribute to the in-depth exploration of SQP in clinical applications. Network pharmacology analysis was used to screen the target genes of SQP for NASH treatment based on public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) analysis were used to search for crucial target genes and mechanisms. UPLC-MS/MS was used to verify the active compounds of the SQP screened. The hepatic pathology and biochemical indicators of rats were used to judge the modeling results and the curative effect of SQP. Western blotting and qRT-PCR were used to verify the expression of crucial target genes at the protein and RNA levels, respectively. Network pharmacology analysis and bioinformatics analysis showed that PTGS2, JUN, MYC, and CDKN1A might be crucial target genes in the primary mechanism of SQP in treating NASH and improving the inflammatory response. The UPLC-MS/MS results confirmed that the hub active compound, quercetin, screened out through the TCMSP database, is indeed present in SQP. Hepatic injury and lipid metabolism indicators of NASH rats were significantly improved after SQP treatment. The results of WB and qRT-PCR showed that the expression of PTGS2, JUN, MYC, and CDKN1A was higher in NASH rats than in normal rats and decreased after SQP treatment. The expression of inflammatory cytokines (IL-1ß, IL-6, TNF-α) was reduced after SQP treatment, which confirmed that SQP could improve hepatic inflammation in rats. These results suggested that SQP could ameliorate NASH in rats, and that quercetin may be the critical active compound that exerts the therapeutic effect.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Animales , Cromatografía Liquida , Ciclooxigenasa 2 , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Quercetina , Ratas , Espectrometría de Masas en Tándem
8.
Front Cell Infect Microbiol ; 12: 824597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35531334

RESUMEN

Aim: To investigate the treating effect of Yiqi-Bushen-Tiaozhi (YBT) recipe on nonalcoholic steatohepatitis (NASH) mice, determine whether the outcome was associated with gut microbiota, and clarify the regulating mechanism. Methods: NASH mice were induced by high-fat and high-fructose diets (HFFD). In the fifth week, mice in the YBT group were orally administrated YBT (22.12g·kg-1·d-1) daily for 12 weeks. Fresh stool of mice was collected at the 16th week for fecal 16S rDNA analysis. Hepatic pathology and biochemical indicators were used to reflect the improvement of YBT on hepatic inflammation and lipid metabolism in NASH mice. Quantitative real-time PCR (qRT-PCR) was used to verify the results of PICRUSt analysis. Results: Results of the pathological and biochemical index showed that YBT could improve NASH mice. Compared with improving inflammation and hepatocyte damage, YBT may be more focused on enhancing metabolic disorders in mice, such as increasing HDL-c level. The diversity and richness of the gut microbiota of NASH mice induced by HFFD are significantly different from the normal control (NC) group. After YBT treatment, the diversity and richness of the mice microbiota will be increased to similar NC mice. Intestinimonas, Acetatifactor, Alistipes, Intestinimonas, Acetatifactor, and Alistipes have the most significant changes in the class level. PICRUSt analysis was performed to predict genomic functions based on the 16S rDNA results and reference sequencing. The efficacy of YBT in the treatment of NASH can be achieved by regulating the diversity and richness of gut microbiota. PICRUSt analysis results showed that the most relevant function of the microbiota construction variations is α- Linolenic acid (ALA) metabolism. Results of qRT-PCR showed significant differences between groups in the expression of Fatty acid desaturase 1 (FADS1), Fatty acid desaturase 2 (FADS2), Acyl-CoA Oxidase 1 (ACOX1), and Acyl-CoA Oxidase 2 (ACOX2) related to ALA metabolism. The expression of the above genes will be inhibited in the liver and small intestine of the HFFD group mice, and the expression can be restored after YBT treatment. Conclusion: YBT could treat NASH mice by improving the diversity and richness of gut microbiota and further the improvement of ALA metabolism.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Acil-CoA Oxidasa/metabolismo , Animales , ADN Ribosómico , Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Ácido Graso Desaturasas , Fructosa/efectos adversos , Microbioma Gastrointestinal/fisiología , Inflamación/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo
9.
Med Sci Monit ; 28: e934424, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184130

RESUMEN

BACKGROUND The incidence of breast cancer is increasing annually. Obesity and metabolism are considered risk factors for breast cancer. Discovery of obesity- and metabolism-related breast cancer prognostic genes is imminent. MATERIAL AND METHODS We screened metabolism-related genes (MRG) from KEGG and downloaded the obese female dataset GSE151839 from GEO, which screened differentially-expressed genes (DEGs), seen as female obesity-related genes. The intersection of MRGs and DEGs was obesity-related metabolic genes (OMGs), verified by enrichment analysis. After downloading breast cancer data from TCGA, univariate Cox regression and log-rank P analyses were used to screen hub OMGs related to breast cancer prognosis. ROC curve and Kaplan-Meier (KM) plotter, GEPIA, and GENT2 databases were used to verify the hub OMGs at the RNA level. CPTAC and HLA databases were used to verify the hub OMGs at the protein level. RESULTS We screened 33 OMGs. The results of univariate Cox regression and log-rank P analysis showed 3 of 33 OMGs (ABCA1, LPIN1, HSD17B8) were associated with the prognosis of breast cancer patients. After verification with ROC, KM-plotter, and GEPIA, only HSD17B8 was related to breast cancer prognosis (overall/disease-free survival). Results of GENT2 showed the RNA expression of HSD17B8 in breast cancer subtypes with poor prognosis is significantly lower than that with good prognosis. Results of CPTAC and HLA databases showed that the protein expression level of HSD17B8 in breast cancer tissues was significantly lower than that in adjacent normal tissues. CONCLUSIONS HSD17B8 is a protective gene against breast cancer. The higher the expression of HSD17B8, the better the prognosis of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Obesidad/genética , Oxidorreductasas/genética , Mapas de Interacción de Proteínas/genética , Proteínas/genética , Transcriptoma/genética , Biomarcadores de Tumor/genética , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/metabolismo , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Genes MHC Clase I , Humanos , Obesidad/complicaciones , Obesidad/metabolismo , Oxidorreductasas/biosíntesis , Pronóstico , Proteómica , Curva ROC
10.
Front Pharmacol ; 12: 694475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290612

RESUMEN

Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.

11.
Front Cardiovasc Med ; 8: 655575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869312

RESUMEN

With the continuous improvement of living standards but the lack of exercise, aging-associated metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD) are becoming a lingering dark cloud over society. Studies have found that metabolic disorders are near related to glucose, lipid metabolism, and cellular aging. Fibroblast growth factor 21 (FGF21), a member of the FGFs family, efficiently regulates the homeostasis of metabolism and cellular aging. By activating autophagy genes and improving inflammation, FGF21 indirectly delays cellular aging and directly exerts anti-aging effects by regulating aging genes. FGF21 can also regulate glucose and lipid metabolism by controlling metabolism-related genes, such as adipose triglyceride lipase (ATGL) and acetyl-CoA carboxylase (ACC1). Because FGF21 can regulate metabolism and cellular aging simultaneously, FGF21 analogs and FGF21 receptor agonists are gradually being valued and could become a treatment approach for aging-associated metabolic diseases. However, the mechanism by which FGF21 achieves curative effects is still not known. This review aims to interpret the interactive influence between FGF21, aging, and metabolic diseases and delineate the pharmacology of FGF21, providing theoretical support for further research on FGF21.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...