Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 99: 24-35, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27988344

RESUMEN

Axon regeneration in the central nervous system is limited both by inhibitory extracellular cues and by an intrinsically low capacity for axon growth in some CNS populations. Chondroitin sulfate proteoglycans (CSPGs) are well-studied inhibitors of axon growth in the CNS, and degradation of CSPGs by chondroitinase has been shown to improve the extension of injured axons. Alternatively, axon growth can be improved by targeting the neuron-intrinsic growth capacity through forced expression of regeneration-associated transcription factors. For example, a transcriptionally active chimera of Krüppel-like Factor 7 (KLF7) and a VP16 domain improves axon growth when expressed in corticospinal tract neurons. Here we tested the hypothesis that combined expression of chondroitinase and VP16-KLF7 would lead to further improvements in axon growth after spinal injury. Chondroitinase was expressed by viral transduction of cells in the spinal cord, while VP16-KLF7 was virally expressed in sensory neurons of the dorsal root ganglia or corticospinal tract (CST) neurons. After transection of the dorsal columns, both chondroitinase and VP16-KLF7 increased the proximity of severed sensory axons to the injury site. Similarly, after complete crush injuries, VP16-KLF7 expression increased the approach of CST axons to the injury site. In neither paradigm however, did single or combined treatment with chondroitinase or VP16-KLF7 enable regenerative growth distal to the injury. These results substantiate a role for CSPG inhibition and low KLF7 activity in determining the net retraction of axons from sites of spinal injury, while suggesting that additional factors act to limit a full regenerative response.


Asunto(s)
Axones/metabolismo , Condroitina ABC Liasa/administración & dosificación , Factores de Transcripción de Tipo Kruppel/administración & dosificación , Neuronas Aferentes/metabolismo , Tractos Piramidales/metabolismo , Traumatismos de la Médula Espinal/terapia , Animales , Axones/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Condroitina ABC Liasa/genética , Condroitina ABC Liasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Terapia Genética , Vectores Genéticos , Células HEK293 , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Endogámicos C57BL , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Proyección Neuronal/fisiología , Neuronas Aferentes/patología , Proteus vulgaris , Tractos Piramidales/patología , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
2.
J Neurosci ; 35(7): 3139-45, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25698749

RESUMEN

Embryonic neurons, peripheral neurons, and CNS neurons in zebrafish respond to axon injury by initiating pro-regenerative transcriptional programs that enable axons to extend, locate appropriate targets, and ultimately contribute to behavioral recovery. In contrast, many long-distance projection neurons in the adult mammalian CNS, notably corticospinal tract (CST) neurons, display a much lower regenerative capacity. To promote CNS repair, a long-standing goal has been to activate pro-regenerative mechanisms that are normally missing from injured CNS neurons. Sox11 is a transcription factor whose expression is common to a many types of regenerating neurons, but it is unknown whether suboptimal Sox11 expression contributes to low regenerative capacity in the adult mammalian CNS. Here we show in adult mice that dorsal root ganglion neurons (DRGs) and CST neurons fail to upregulate Sox11 after spinal axon injury. Furthermore, forced viral expression of Sox11 reduces axonal dieback of DRG axons, and promotes CST sprouting and regenerative axon growth in both acute and chronic injury paradigms. In tests of forelimb dexterity, however, Sox11 overexpression in the cortex caused a modest but consistent behavioral impairment. These data identify Sox11 as a key transcription factor that can confer an elevated innate regenerative capacity to CNS neurons. The results also demonstrate an unexpected dissociation between axon growth and behavioral outcome, highlighting the need for additional strategies to optimize the functional output of stimulated neurons.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Regeneración Nerviosa/fisiología , Tractos Piramidales/fisiología , Recuperación de la Función/fisiología , Factores de Transcripción SOXC/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Adenoviridae/genética , Animales , Modelos Animales de Enfermedad , Conducta Exploratoria/fisiología , Femenino , Ganglios Espinales/patología , Fuerza de la Mano/fisiología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Desempeño Psicomotor/fisiología , Tractos Piramidales/patología , Factores de Transcripción SOXC/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA