Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(16): 7190-7196, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38577769

RESUMEN

The combination of amphiphilic ions and metal complexes may enable the construction of assemblies in which the assembly structure and electronic state of the metal complexes change concertedly. In this work, an alternating layered structure of [Co2Fe2] complexes and amphiphilic anions was constructed. In the crystal structure, [Co2Fe2] complexes and water molecules formed a hydrogen-bonded supramolecular one-dimensional (1D) chain in the hydrophilic layer. A reversible structural change between the 1D chain and discrete [Co2Fe2] complexes was found to occur concertedly with an electron transfer-coupled spin transition (ETCST) of the [Co2Fe2] complex and desorption/adsorption of water molecules.

2.
Chemistry ; 29(70): e202302604, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37743250

RESUMEN

Seed-mediated growth has been widely used to synthesize noble metal nanoparticles with controlled size and shape. Although it is becoming possible to directly observe the nucleation process of metal atoms at the single atom level by using transmission electron microscopy (TEM), it is challenging to control the formation and growth of seeds with only a few metal atoms in homogeneous solution systems. This work reports site-selective formation and growth of atomic scale seeds of the Au nanoparticle in a nanospace of an organic cage molecule. We synthesized a cage molecule with amines and phenols, which were found to both capture and reduce Au(III) ions to spontaneously form the atomic scale seeds containing Au(0) in the nanospace. The growth reaction of the atomic scale seeds afforded Au nanoparticles with an average diameter of 2.0±0.2 nm, which is in good agreement with the inner diameter of the cage molecule.

3.
Chemistry ; : e202302083, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37449558

RESUMEN

Invited for the cover of this issue is the group of Masayuki Nihei at the University of Tsukuba. The image depicts the electron transfer-triggered structural conversion of the supramolecular assembly of a [Co2 Fe2 ] complex between reverse vesicles and entangled one-dimensional chains. Read the full text of the article at 10.1002/chem.202300954.

4.
Polymers (Basel) ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242940

RESUMEN

We synthesized iron(II)-triazole spin crossover compounds of the type [Fe(atrz)3]X2 and incorporated and deposited them on electrospun polymer nanofibers. For this, we used two separate electrospinning methods with the goal of obtaining polymer complex composites with intact switching properties. In view of possible applications, we chose iron(II)-triazole-complexes that are known to exhibit spin crossover close to ambient temperature. Therefore, we used the complexes [Fe(atrz)3]Cl2 and [Fe(atrz)3](2ns)2 (2ns = 2-Naphthalenesulfonate) and deposited those on fibers of polymethylmethacrylate (PMMA) and incorporated them into core-shell-like PMMA fiber structures. These core-shell structures showed to be inert to outer environmental influences, such as droplets of water, which we purposely cast on the fiber structure, and it did not rinse away the used complex. We analyzed both the complexes and the composites with IR-, UV/Vis, Mössbauer spectroscopy, SQUID magnetometry, as well as SEM and EDX imaging. The analysis via UV/Vis spectroscopy, Mössbauer spectroscopy, and temperature-dependent magnetic measurements with the SQUID magnetometer showed that the spin crossover properties were maintained and were not changed after the electrospinning processes.

5.
Chemistry ; 29(46): e202300954, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37208296

RESUMEN

Combining metal complexes with amphiphilic molecules leads to a wide variety of functional self-assembled nanostructures. Metal complexes exhibiting spin transitions can be good candidates as the trigger to cause structural conversion of such assembly because they respond to various external stimuli. In this work, we studied a structural conversion of a supramolecular assembly containing a [Co2 Fe2 ] complex through a thermally induced electron transfer-coupled spin transition (ETCST). With an amphiphilic anion, the [Co2 Fe2 ] complex formed reverse vesicles in solution and showed thermal ETCST. In contrast, thermal ETCST in the presence of a bridging hydrogen-bond donor caused structural conversion from the reverse vesicle structure to entangled one-dimensional chains through hydrogen bond formation.

6.
Dalton Trans ; 52(13): 3947-3953, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36779535

RESUMEN

A series of tetranuclear [Cu3Ln] complexes, [Cu3Gd(L)3(NO3)2(H2O)3](NO3)·H2O (1), [Cu3Tb(L)3(NO3)2(H2O)3](NO3) (2) and [Cu3Dy(L)3(NO3)3(H2O)2]·1.5(H2O) (3), were synthesized by a one-pot reaction using a simple tetraketone-type ligand (H2L = (3Z,5Z)-4,5-dihydroxy-3,5-octadiene-2,7-dione). X-ray structural analyses revealed that each complex has a planar tetranuclear core of [Cu3Ln] (Ln = Gd, Tb, and Dy), in which the Ln ion is accommodated in the centre of a Cu3O6 metallocycle. A cryomagnetic study revealed that all complexes show intramolecular ferromagnetic interactions between Cu(II) and Ln(III) ions. The [Cu3Gd] complex (1) has an ST = 5 spin ground state and shows a magneto-caloric effect with a maximum magnetic entropy change (-ΔSm) of 16.4 J kg-1 K-1 (5 T, 2.4 K). On the other hand, the [Cu3Tb] complex (2) shows a slow magnetic relaxation behavior under a zero magnetic field. The analysis of an Arrhenius plot reveals that the effective energy barrier of spin reversal is 13.1 K. The [Cu3Dy] complex (3) also shows a slow magnetic relaxation under 1300 Oe dc magnetic field with an effective energy barrier of 6.82 K.

7.
Dalton Trans ; 51(2): 562-569, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34901982

RESUMEN

A series of trinuclear complexes, [MnII2YIII(L)2(HL)2(NO3)3][YIII(NO3)5]·7H2O (1'), [MnII2GdIII(HL)4(NO3)4]2[MnII2GdIII(L)(HL)3(NO3)4][GdIII(NO3)5]4·2(o-Xy)·12H2O (2') and [MnII3(L)(HL)2(NO3)4](NO3)·1.25(p-Xy) (3'), were synthesized using a ß-diketone ligand HL (HL = 1,3-bis(pyridin-2-yl)propane-1,3-dione). X-ray structural analyses revealed that each complex has a trinuclear core with an Mn(II)-M-Mn(II) arrangement (M = YIII (1), GdIII (2), and MnII (3)). In 1' with a diamagnetic Y(III) ion, negligible antiferromagnetic interactions between terminal Mn(II) ions are operative. On the other hand, 2' shows ferromagnetic interactions between Mn(II) and Gd(III) ions, affording a spin ground state of ST = 17/2. The homometallic Mn(II)3 complex of 3' has an ST = 5/2 spin ground state resulting from the antiferromagnetic interactions between neighboring Mn(II) ions. The maximum magnetic entropy change (-ΔSm) of 1'-3' was estimated to be 12.3, 24.8, and 8.0 J kg-1 K-1, respectively.

8.
Chem Commun (Camb) ; 57(79): 10162-10165, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34516598

RESUMEN

Mononuclear and icosanuclear spin-crossover complexes, [FeII(HL)2](BF4)2 (1) and [FeII20(L)24](BF4)16 (2), were synthesized using an asymmetric multidentate ligand (HL). 1 has a bis-chelate structure with two protonated ligands, while 2 has a ring-shape structure comprising four [2 × 2] grid moieties and four mononuclear units.

9.
Inorg Chem ; 58(18): 11912-11919, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31184872

RESUMEN

Discrete cyanide-bridged Co-Fe multinuclear complexes can be considered as functional units of bulk Co-Fe Prussian blue analogues, and they have been recognized as a new class of switching molecules in the last decade. The switching property of the cyanide-bridged Co-Fe complexes is based on intramolecular electron transfers between Co and Fe ions, and we herein refer to this phenomenon as an electron transfer-coupled spin transition (ETCST). Although there have been numerous reports on the complexes exhibiting ETCST behavior, the systematic study of the substituent effects on the thermal ETCST equilibrium in solution has not been reported yet, and the rational control of the equilibrium temperature remains challenging. We report here the syntheses and thermal ETCST behavior both in the solid state and solution for a series of tetranuclear [Co2Fe2] complexes, [Co2Fe2(CN)6(L1)2(L2)4]X2 (L1 and L2: tri- and bidentate capping ligands for Fe and Co ions, X: counteranions). All complexes showed thermal ETCST equilibrium between high-spin ([(hs-CoII)2(ls-FeIII)2]) and low-spin ([(ls-CoIII)2(ls-FeII)2]) states in butyronitrile, and the equilibrium temperatures (T1/2) showed systematic shifts by chemical modifications and chemical stimuli. The T1/2 values were correlated with the redox potential differences (ΔE) of the Fe and Co ions in the constituent units, and the larger ΔE values led to the lower T1/2. The present result suggests that the thermal ETCST behavior in solution can be rationally designed by considering the redox potentials of the constituent molecules.

10.
Chemistry ; 25(31): 7449-7452, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-30920109

RESUMEN

A hydrogen-bonding donor-acceptor system, [Co2 Fe2 (bpy*)4 (CN)6 (tp*)2 ](PF6 )2 ⋅2ABA⋅4BN⋅2PE (1 solv ), was prepared by co-crystallization of an external stimuli-responsive cyanide-bridged tetranuclear [Co2 Fe2 ] complex and bifunctional hydrogen-bonding donors, p-aminobenzoic acid. Compound 1 solv exhibited a gradual electron-transfer-coupled spin transition (ETCST), and the removal of solvent molecules led to an abrupt thermal ETCST behavior with increased transition temperature. X-ray structural analysis revealed that the modification of ETCST was caused by a significant alteration of a hydrogen-bonding mode between the tetranuclear [Co2 Fe2 ]2+ cations and ABA molecules. Variable temperature IR measurements indicated that the desolvated form, 1 desolv , showed dynamic alteration of hydrogen-bonding interactions coupled with thermal ETCST behavior. These results suggested that the tetranuclear [Co2 Fe2 ] complex shows solid-state modulations of hydrogen-bond strengths by external stimuli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA