Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(1): 212-218, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511458

RESUMEN

We investigated the effects and mechanisms of nitrogen additions (0, 1, 2, 4, 8, 16, 24, 32 g N·m-2·a-1) on contents of anion and cation in rhizosphere soil, bulk soil, and mixed rhizosphere and bulk soil in the heavily salinized grassland in the agro-pastoral ecotone of North China. The results showed that pH of rhizosphere, mixed and bulk soils decreased significantly with the increases of nitrogen addition levels. Moreover, pH of three soil types under the 32 g N·m-2·a-1 treatment decreased by 1.2, 0.9, and 0.6, respectively, while pH of rhizosphere soil decreased by 0.44 compared with the bulk soil. Na+ content of rhizosphere, mixed and bulk soils significantly decreased, while the NO3- content significantly increased. The proportion of Na+ content in total soluble salt content in rhizosphere soil decreased by 14% and that in bulk soil decreased by 12% after the 32 g N·m-2·a-1 addition. NO3- content increased by 29% in rhizosphere soil and by 26% in bulk soil. There was significant negative correlation between pH and NO3- content, and significant positive correlation between pH and Na+ content. The total soluble salt content of rhizosphere soil under the 32 g N·m-2·a-1 treatment was significantly reduced by 31.5%. Collectedly, nitrogen deposition could reduce soil pH and total soluble salt content of rhizosphere soil and alleviate saline-alkali stress.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Pradera , Nitrógeno/análisis , Aniones , Cationes , China , Microbiología del Suelo
2.
Sci Rep ; 12(1): 18011, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289396

RESUMEN

Programmed death-ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two potential targets for cancer immunotherapy, early clinical studies showed the combination therapy of anti-PD-L1 and anti-TIGIT had synergistic efficacy both in the terms of overall response rate (ORR) and overall survival (OS). It is rational to construct bispecific antibodies targeting PD-L1 and TIGIT, besides retaining the efficacy of the combination therapy, bispecific antibodies (BsAbs) can provide a new mechanism of action, such as bridging between tumor cells and T/NK cells. Here, we developed an IgG1-type bispecific antibody with optimal cytotoxicity. In this study, we thoroughly investigated 16 IgG-VHH formats with variable orientations and linker lengths, the results demonstrated that (G4S)2 linker not only properly separated two binding domains but also had the highest protein yield. Moreover, VHH-HC orientation perfectly maintained the binding and cytotoxicity activity of the variable domain of the heavy chain of heavy-chain-only antibody (VHH) and immunoglobulin G (IgG). Following treatment with BiPT-23, tumor growth was significantly suppressed in vivo, with more cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells infiltration, and selective depletion of Regulatory T cells (Tregs). BiPT-23 represents novel immunotherapy engineered to prevent hyperprogression of cancer with PD-1 blockade, and preferentially killed PD-L1+ tumor cells, and TIGIT+ Tregs but maintained CD11b+F4/80+ immune cells within the tumor microenvironment (TME).


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1 , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inmunoglobulina G/uso terapéutico , Microambiente Tumoral , Receptores Inmunológicos
3.
Chemosphere ; 253: 126730, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32289599

RESUMEN

The iron-air fuel cell (IAFC) has been successfully employed for the oxidative removal of many pollutants, but its feasibility for reductive immobilization of Cr(VI) is still unknown. Herein, we developed an IAFC system consisting of an iron anode and an activated carbon-PTFE based air-cathode, and evaluated its performance for Cr(VI) removal and power generation. In this reaction system, cathodic reduction and Fe(II) reduction both contributed to the reductive removal of Cr(VI). It was found that the decrease of solution pH from 6.0 to 3.0 promoted the removal of Cr(VI) due to the enhanced yield of Fe(II) ions and cathodic reduction, accompanying the increased power generation from 1040 mW m-2 to 2880 mW m-2. Besides, the Cr(VI) removal and power generation could be also promoted by elevating Na2SO4 concentration from 0.01 M to 0.1 M. In the IAFC process, Cr(VI) was initially reduced to less soluble ionic Cr(III) homogeneously and heterogeneously and then Cr(III) was immobilized by adsorption and/or co-precipitation with the fresh Fe(III) (oxy)hydroxides. Generally, this study is of great interest for the engineering community to design the environmentally benign and cost-effective strategy for the treatment of wastewater in remote areas, where the electricity is not easily available.


Asunto(s)
Fuentes de Energía Bioeléctrica , Carbón Orgánico/química , Cromo/análisis , Hierro/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Adsorción , Electricidad , Electrodos , Oxidación-Reducción , Politetrafluoroetileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...