Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 730: 150391, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002199

RESUMEN

Glucocorticoid-induced osteoporosis serves as a primary cause for secondary osteoporosis and fragility fractures, representing the most prevalent adverse reaction associated with prolonged glucocorticoid use. In this study, to elucidate the impact and underlying mechanisms of fluid shear stress (FSS)-mediated Piezo1 on dexamethasone (Dex)-induced apoptosis, we respectively applied Dex treatment for 6 h, FSS at 9 dyne/cm2 for 30 min, Yoda1 treatment for 2 h, and Piezo1 siRNA transfection to intervene in MLO-Y4 osteocytes. Western blot analysis was used to assess the expression of Cleaved Caspase-3, Bax, Bcl-2, and proteins associated with the PI3K/Akt pathway. Additionally, qRT-PCR was utilized to quantify the mRNA expression levels of these molecules. Hoechst 33258 staining and flow cytometry were utilized to evaluate the apoptosis levels. The results indicate that FSS at 9 dyne/cm2 for 30 min significantly upregulates Piezo1 in osteocytes. Following Dex-induced apoptosis, the phosphorylation levels of PI3K and Akt are markedly suppressed. FSS-mediated Piezo1 exerts a protective effect against Dex-induced apoptosis by activating the PI3K/Akt pathway. Additionally, downregulating the expression of Piezo1 in osteocytes using siRNA exacerbates Dex-induced apoptosis. To further demonstrate the role of the PI3K/Akt signaling pathway, after intervention with the PI3K pathway inhibitor, the activation of the PI3K/Akt pathway by FSS-mediated Piezo1 in osteocytes was significantly inhibited, reversing the anti-apoptotic effect. This study indicates that under FSS, Piezo1 in MLO-Y4 osteocytes is significantly upregulated, providing protection against Dex-induced apoptosis through the activation of the PI3K/Akt pathway.

2.
Front Nutr ; 11: 1418120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887503

RESUMEN

Composite natural emulsifiers such as whey protein isolate (WPI) and chitosan (CS) are commonly used in Pickering emulsions to address the effect of thermal deformation of proteins before complexation with CS and heating after complexation. In this study, the properties of WPI and CS composites were investigated by complexing CS with either unmodified WPI or thermally denatured WPI (DWPI). Three types of composite particles were prepared, WPI-CS, DWPI-CS, and D(WPI-CS). Atomic force microscopy revealed that the composite particles formed larger aggregates with increased contour size and surface roughness compared to CS and WPI, whereas the interfacial tension decreased, indicating improved emulsifying abilities. Fourier-transform infrared analysis revealed differences in the hydrogen bonds between CS and WPI/DWPI. All three composite particles formed stable emulsions with droplet sizes of 20.00 ± 0.15, 27.80 ± 0.35, and 16.77 ± 0.51 µm, respectively. Thermal stability experiments revealed that the curcumin emulsion stabilized with WPI-CS and DWPI-CS exhibited relatively better thermal stability than that stabilized with D(WPI-CS). In vitro experiments results indicated that the bioaccessibility of the curcumin emulsion stabilized with WPI-CS was 61.18 ± 0.16%, significantly higher than that of the emulsions prepared with the other two composite particles (p < 0.05). This study will enable the customized design of WPI composite-based Pickering emulsions for application in the food and nutrition industries.

3.
Orthop Surg ; 16(6): 1418-1433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658320

RESUMEN

OBJECTIVE: Bone marrow mesenchymal stem cells (BMSCs) show significant potential for osteogenic differentiation. However, the underlying mechanisms of osteogenic capability in osteoporosis-derived BMSCs (OP-BMSCs) remain unclear. This study aims to explore the impact of YTHDF3 (YTH N6-methyladenosine RNA binding protein 3) on the osteogenic traits of OP-BMSCs and identify potential therapeutic targets to boost their bone formation ability. METHODS: We examined microarray datasets (GSE35956 and GSE35958) from the Gene Expression Omnibus (GEO) to identify potential m6A regulators in osteoporosis (OP). Employing differential, protein interaction, and machine learning analyses, we pinpointed critical hub genes linked to OP. We further probed the relationship between these genes and OP using single-cell analysis, immune infiltration assessment, and Mendelian randomization. Our in vivo and in vitro experiments validated the expression and functionality of the key hub gene. RESULTS: Differential analysis revealed seven key hub genes related to OP, with YTHDF3 as a central player, supported by protein interaction analysis and machine learning methodologies. Subsequent single-cell, immune infiltration, and Mendelian randomization studies consistently validated YTHDF3's significant link to osteoporosis. YTHDF3 levels are significantly reduced in femoral head tissue from postmenopausal osteoporosis (PMOP) patients and femoral bone tissue from PMOP mice. Additionally, silencing YTHDF3 in OP-BMSCs substantially impedes their proliferation and differentiation. CONCLUSION: YTHDF3 may be implicated in the pathogenesis of OP by regulating the proliferation and osteogenic differentiation of OP-BMSCs.


Asunto(s)
Biología Computacional , Células Madre Mesenquimatosas , Osteogénesis , Osteoporosis Posmenopáusica , Humanos , Osteoporosis Posmenopáusica/genética , Animales , Femenino , Células Madre Mesenquimatosas/metabolismo , Ratones , Biología Computacional/métodos , Osteogénesis/fisiología , Osteogénesis/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Aprendizaje Automático , Diferenciación Celular , Adenosina/metabolismo , Adenosina/genética , Adenosina/análogos & derivados
4.
J Child Orthop ; 18(2): 236-245, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38567041

RESUMEN

Background: Ewing sarcoma remains the second most prevalent primary aggressive bone tumor in teens and young adults. The aim of our study was to develop and validate a web-based nomogram to predict the overall survival for Ewing sarcoma in children. Methods: A total of 698 patients, with 640 cases from the Surveillance, Epidemiology, and End Results (the training set) and 58 cases (the external validation set), were included in this study. Cox analyses were carried out to determine the independent prognostic indicators, which were further included to establish a web-based nomogram. The predictive abilities were tested through the concordance index, calibration curve, decision curve analysis, and area under the receiver operating characteristic curve. Results: As suggested by univariate and multivariate Cox analyses, age, primary site, tumor size, metastasis stage (M stage), and chemotherapy were included as the independent predictive variables. The area under the receiver operating characteristic curve values, calibration curves, concordance index, and decision curve analysis from training and validation groups suggested the model has great clinical applications. Conclusion: We developed a convenient and precise web-based nomogram to evaluate overall survival for Ewing sarcoma in children. The application of this nomogram would assist physicians and patients in making decisions.

5.
Cell Death Discov ; 10(1): 155, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538596

RESUMEN

Senile osteoporosis is mainly caused by osteoblasts attenuation, which results in reduced bone mass and disrupted bone remodeling. Numerous studies have focused on the regulatory role of m6A modification in osteoporosis; however, most of the studies have investigated the differentiation of bone marrow mesenchymal stem cells (BMSCs), while the direct regulatory mechanism of m6A on osteoblasts remains unknown. This study revealed that the progression of senile osteoporosis is closely related to the downregulation of m6A modification and methyltransferase-like 3 (METTL3). Overexpression of METTL3 inhibits osteoblast aging. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that METTL3 upregulates the stability of Hspa1a mRNA, thereby inhibiting osteoblast aging. Moreover, the results demonstrated that METTL3 enhances the stability of Hspa1a mRNA via m6A modification to regulate osteoblast aging. Notably, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) participates in stabilizing Hspa1a mRNA in the METTL3-mediated m6A modification process, rather than the well-known degradation function. Mechanistically, METTL3 increases the stability of Hspa1a mRNA in a YTHDF2-dependent manner to inhibit osteoblast aging. Our results confirmed the significant role of METTL3 in osteoblast aging and suggested that METTL3 could be a potential therapeutic target for senile osteoporosis.

6.
Zhongguo Gu Shang ; 36(10): 926-31, 2023 Oct 25.
Artículo en Chino | MEDLINE | ID: mdl-37881923

RESUMEN

OBJECTIVE: To compare the posterior cruciate ligament(PCL) index with six different measurement methods, and analyze and verify its clinical diagnostic value in anterior cruciate ligament (ACL) injury. METHODS: The Magnetic resonance imaging (MRI) data of 225 knee joints in our hospital from May 2018 to March 2022 were retrospectively analyzed, aged from 18 to 60 years old, with a median of 32 years old. On the sagittal MRI images of 114 patients with ACL injury and 111 patients with intact ACL, Measure the straight-line distance (A) between the femoral attachment point and the tibial attachment point of the PCL on the MRI sagittal image and the maximum vertical distance (B) between the straight line and the arcuate mark point of the PCL on the sagittal image, calculate the PCL index and evaluate the diagnostic value of the PCL index for ACL injury. RESULTS: The PCL index of the ACL normal group and the ACL injury group were statistically described. There was no significant difference in PCL index 1, 2, 3 and 6 between the two groups(P>0.05). The difference of PCL index 4 and 5 between the two groups was statistically significant (P<0.001). This study only found that the PCL index 2, 6 in the ACL normal group had a negative correlation with the patient's age (correlation coefficient=-0.213, -0.819;P<0.05), and the PCL index 5 in the ACL injury group was significantly correlated with the patient's body mass index(BMI)had a negative correlation (correlation coefficient=-0.277, P<0.05). CONCLUSION: The change of PCL index is helpful for the diagnosis of ACL injury, PCL index 4 and 5 can be used as effective reference indexes for diagnosing ACL injury in clinic.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Ligamento Cruzado Posterior , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Ligamento Cruzado Posterior/diagnóstico por imagen , Lesiones del Ligamento Cruzado Anterior/diagnóstico por imagen , Ligamento Cruzado Anterior , Estudios Retrospectivos , Articulación de la Rodilla , Imagen por Resonancia Magnética/métodos
7.
Sci Total Environ ; 896: 165312, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37414191

RESUMEN

Heatwaves are increasing and expected to intensify in coming decades with global warming. However, direct evidence and knowledge of the mechanisms of the effects of heatwaves on harmful cyanobacteria blooms are limited and unclear. In 2022, we measured chlorophyll-a (Chla) at 20-s intervals based on a novel ground-based proximal sensing system (GBPSs) in the shallow eutrophic Lake Taihu and combined in situ Chla measurements with meteorological data to explore the impacts of heatwaves on cyanobacterial blooms and the potential relevant mechanisms. We found that three unprecedented summer heatwaves (July 4-15, July 22-August 16, and August 18-23) lasting a total of 44 days were observed with average maximum air temperatures (MATs) of 38.1 ± 1.9 °C, 38.7 ± 1.9 °C, and 40.2 ± 2.1 °C, respectively, and that these heatwaves were characterized by high air temperature, strong PAR, low wind speed and rainfall. The daily Chla significantly increased with increasing MAT and photosynthetically active radiation (PAR) and decreasing wind speed, revealing a clear promotion effect on harmful cyanobacteria blooms from the heatwaves. Moreover, the combined effects of high temperature, strong PAR and low wind, enhanced the stability of the water column, the light availability and the phosphorus release from the sediment which ultimately boosted cyanobacteria blooms. The projected increase in heatwave occurrence under future climate change underscores the urgency of reducing nutrient input to eutrophic lakes to combat cyanobacteria growth and of improving early warning systems to ensure secure water management.


Asunto(s)
Cianobacterias , Eutrofización , Lagos/microbiología , Clorofila A , Estaciones del Año , Agua , China
8.
Indian J Orthop ; 57(1): 20-32, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36660483

RESUMEN

Background: Bone bruises and concomitant ligament injuries after anterior cruciate ligament (ACL) injuries have attracted attention, but their correlation and potential clinical significance remain unclear. Purpose: To assess the relationship between bone bruises and concomitant ligamentous injuries in ACL injuries. Study design: Systematic review. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Cochrane Library was completed from inception to October 20, 2021. All articles that evaluated the relationship between bone bruises and related ligaments injuries were included. Methodological Index for Non-Randomized Studies (MINORS) was used for quality assessment as well as Review Manager 5.3 was used for data analysis. Results: A total of 19 studies evaluating 3292 patients were included. After meta-analysis, anterolateral ligament (ALL) injuries were associated with bone bruising on the lateral tibial plateau (LTP) (RR = 2.33; 95% CI 1.44-3.77; p = 0.0006), lateral femoral condyle (LFC) (RR = 1.97; 95% CI 1.37-2.85; p = 0.0003) and medial tibial plateau (MTP) (RR = 1.62; 95% CI 1.24-2.11; p = 0.0004); Moreover, medial collateral ligament (MCL) injuries were associated with bone bruising on the femur (RR = 1.49; 95% CI 1.17-1.90; p = 0.001), and no statistical significance was found between bone bruising on the MTP and Kaplan fiber (KF) injuries (RR = 1.58; 95% CI 1.00-2.49; p = 0.05). Nonetheless, the current evidence did not conclude that bone bruises were associated with lateral collateral ligament (LCL) injuries. Conclusion: For individuals with an ACL injury, bone bruises of the LTP, LFC, and MTP can assist in the diagnosis of ALL injuries. Furthermore, femoral bruising has potential diagnostic value for MCL injuries. Knowing these associations allows surgeons to be alert to ACL-related ligament injuries on MRI and during operations in future clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...