Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 200: 1-5, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24837837

RESUMEN

Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.


Asunto(s)
Detergentes , Matriz Extracelular/fisiología , Pulmón/citología , Pulmón/fisiología , Mecánica Respiratoria , Dodecil Sulfato de Sodio , Resistencia de las Vías Respiratorias , Animales , Elasticidad , Femenino , Congelación , Indoles , Modelos Lineales , Ratones Endogámicos C57BL , Tamaño de los Órganos , Presión , Respiración Artificial , Tráquea/fisiología
2.
J Biomed Mater Res A ; 102(2): 413-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23533110

RESUMEN

Lung bioengineering based on decellularized organ scaffolds is a potential alternative for transplantation. Freezing/thawing, a usual procedure in organ decellularization and storage could modify the mechanical properties of the lung scaffold and reduce the performance of the bioengineered lung when subjected to the physiological inflation-deflation breathing cycles. The aim of this study was to determine the effects of repeated freezing/thawing on the mechanical properties of decellularized lungs in the physiological pressure-volume regime associated with normal ventilation. Fifteen mice lungs (C57BL/6) were decellularized using a conventional protocol not involving organ freezing and based on sodium dodecyl sulfate detergent. Subsequently, the mechanical properties of the acellular lungs were measured before and after subjecting them to three consecutive cycles of freezing/thawing. The resistance (RL ) and elastance (EL ) of the decellularized lungs were computed by linear regression fitting of the recorded signals (tracheal pressure, flow, and volume) during mechanical ventilation. RL was not significantly modified by freezing-thawing: from 0.88 ± 0.37 to 0.90 ± 0.38 cmH2 O·s·mL(-1) (mean ± SE). EL slightly increased from 64.4 ± 11.1 to 73.0 ± 16.3 cmH2 O·mL(-1) after the three freeze-thaw cycles (p = 0.0013). In conclusion, the freezing/thawing process that is commonly used for both organ decellularization and storage induces only minor changes in the ventilation mechanical properties of the organ scaffold.


Asunto(s)
Congelación , Pulmón/química , Dodecil Sulfato de Sodio/química , Andamios del Tejido/química , Animales , Femenino , Ratones
3.
BMC Pulm Med ; 11: 57, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22151802

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) is a respiratory disease characterized by the collapse of the extrathoracic airway and has important social implications related to accidents and cardiovascular risk. The main objective of the present study was to investigate whether the drop in expiratory flow and the volume expired in 0.2 s during the application of negative expiratory pressure (NEP) are associated with the presence and severity of OSA in a population of professional interstate bus drivers who travel medium and long distances. METHODS/DESIGN: An observational, analytic study will be carried out involving adult male subjects of an interstate bus company. Those who agree to participate will undergo a detailed patient history, physical examination involving determination of blood pressure, anthropometric data, circumference measurements (hips, waist and neck), tonsils and Mallampati index. Moreover, specific questionnaires addressing sleep apnea and excessive daytime sleepiness will be administered. Data acquisition will be completely anonymous. Following the medical examination, the participants will perform a spirometry, NEP test and standard overnight polysomnography. The NEP test is performed through the administration of negative pressure at the mouth during expiration. This is a practical test performed while awake and requires little cooperation from the subject. In the absence of expiratory flow limitation, the increase in the pressure gradient between the alveoli and open upper airway caused by NEP results in an increase in expiratory flow. DISCUSSION: Despite the abundance of scientific evidence, OSA is still underdiagnosed in the general population. In addition, diagnostic procedures are expensive, and predictive criteria are still unsatisfactory. Because increased upper airway collapsibility is one of the main determinants of OSA, the response to the application of NEP could be a predictor of this disorder. With the enrollment of this study protocol, the expectation is to encounter predictive NEP values for different degrees of OSA in order to contribute toward an early diagnosis of this condition and reduce its impact and complications among commercial interstate bus drivers. TRIAL REGISTRATION: Registro Brasileiro de Ensaios Clinicos (local acronym RBEC) [Internet]: Rio de Janeiro (RJ): Instituto de Informaçao Cientifica e Tecnologica em Saude (Brazil); 2010 - Identifier RBR-7dq5xx. Cross-sectional study on efficacy of negative expiratory pressure test proposed as screening for obstructive sleep apnea syndrome among commercial interstate bus drivers; 2011 May 31 [7 pages]. Available from http://www.ensaiosclinicos.gov.br/rg/RBR-7dq5xx/.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Síndrome Metabólico/epidemiología , Vehículos a Motor , Apnea Obstructiva del Sueño/diagnóstico , Adulto , Estudios Transversales , Humanos , Masculino , Tamizaje Masivo , Observación , Polisomnografía , Reproducibilidad de los Resultados , Proyectos de Investigación , Apnea Obstructiva del Sueño/epidemiología , Espirometría , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA