Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Science ; 376(6593): 621-624, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511970

RESUMEN

In modern quantum technologies, preservation of the photon statistics of quantum optical states upon frequency conversion holds the key to the viable implementation of quantum networks, which often require interfacing of several subsystems operating in widely different spectral regions. Most current approaches offer only very small frequency shifts and limited tunability, while suffering from high insertion loss and Raman noise originating in the materials used. We introduce a route to quantum-correlation-preserving frequency conversion using hydrogen-filled antiresonant-reflecting photonic crystal fibers. Transient optical phonons generated by stimulated Raman scattering enable selective frequency up-conversion by 125 terahertz of the idler photon of an entangled pair, with efficiencies up to 70%. This threshold-less molecular modulation process preserves quantum correlations, making it ideal for applications in quantum information.

2.
Sci Total Environ ; 790: 148147, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34111789

RESUMEN

The mortality of infaunal bivalves (Venerupis corrugata, Cerastoderma edule, Ruditapes decussatus and Ruditapes philippinarum) due to a drop in salinity caused by extreme precipitation events in estuarine areas has been analyzed within a context of climate change. The Rías Baixas (NW Iberian Peninsula) were selected as a representative area of the estuarine environments where bivalve gathering is performed. Bivalve mortality under extreme precipitation events was analyzed both for historical (1990-2019) and future (2070-2099) periods. Precipitation data were retrieved from the Coordinated Regional Climate Downscaling Experiment (CORDEX) project under the Representative Concentration Pathway (RCP) 8.5 scenario and were converted into river discharges using the HEC-HMS hydrological model. The calculated river discharges were introduced into the Delft3D hydrodynamic model and simulations were performed in order to calculate transport conditions in the Rías Baixas. Salinity data were analyzed to estimate the mortality of the species due to salinity drops. In general, future conditions of moderate and severe mortality may be worse than historically observed, being more intense and covering larger areas. This is mainly observed under neap tides due to less dilution of freshwater plumes when compared with spring tides. Although all the Rías Baixas may be potentially affected, the impact will differ for each ria, being Arousa, where the highest discharges occur, the most affected. The differences among rias, especially those with a similar discharge pattern as Pontevedra and Vigo, suggest that bathymetric features also play a key role in the extent of the area affected by mortality.


Asunto(s)
Bivalvos , Cambio Climático , Animales , Agua Dulce , Ríos , Salinidad
3.
Sci Total Environ ; 768: 144915, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736332

RESUMEN

Ocean warming as a consequence of climate change occurred during the last decades is not homogeneous. This is especially patent for coastal areas, where the warming is influenced by local processes that occur at different time and spatial scales. In this sense, plumes formed by rivers discharge can play a key role in sea surface temperature (SST) warming. SST trends for the coastal points affected by the plumes of the 19 world's mightiest rivers (south 60°N) and their oceanic counterparts were analyzed by means of NOAA's AVHRR OISST data over the period 1982-2019. Coastal areas affected by river plumes showed an annual less intense warming trend than observed at the adjacent ocean in all cases. In average, warming trend was 0.088 °C dec-1 lower for coastal areas, ranging from 0.027 °C dec-1 for Mekong and Irrawaddy/Salween River plume systems to 0.208 °C dec-1 and 0.278 °C dec-1 for Mississippi and Paraná River plumes. The differences in coastal-ocean warming obtained for rivers debouching into inland seas (Danube and Volga Rivers) are similar to the ones observed for the rest of the rivers, even if inland seas are prone to higher warming rates than open seas. As the main conclusion, river plumes seem to have the ability to modulate SST warming near coast within the current context of global warming.

4.
Opt Lett ; 45(7): 1766-1769, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32235994

RESUMEN

The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time, to the best of our knowledge, efficient Raman frequency conversion between vortex modes in a twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High-fidelity transmission of optical vortices in an untwisted SR-PCF becomes more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In a helically twisted SR-PCF, however, the degeneracy between left- and right-handed versions of the same mode is lifted, with the result that they are topologically protected from such scattering. With launch efficiencies of ${\sim}{75}\% $∼75%, a high damage threshold and broadband guidance, these fibers are ideal for performing nonlinear experiments that require the polarization state and azimuthal order of the interacting modes to be preserved over long distances. Vortex coherence waves of internal molecular motion carrying angular momentum are excited in the gas, permitting the polarization and OAM of the Raman bands to be tailored, even in spectral regions where conventional solid-core waveguides are opaque or susceptible to optical damage.

5.
Opt Express ; 27(13): 17708-17717, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31252727

RESUMEN

We study theoretically the optical forces acting on glass nanoplates introduced into hollow waveguides, and show that, depending on the sign of the laser detuning relative to the nanoplate resonance, optomechanical back-action between nanoplate and hollow waveguide can create both traps and anti-traps at intensity nodes and anti-nodes in the supermode field profile, behaving similarly to those experienced by cold atoms when the laser frequency is red or blue detuned of an atomic resonance. This arises from dramatic distortions to the mode profile in the hollow waveguide when the nanoplate is off-resonant, producing gradient forces that vary strongly with nanoplate position. In a planar system, we show that when the nanoplate is constrained by an imaginary mechanical spring, its position exhibits strong bistability as the base position is varied. We then treat a two-dimensional system consisting of an anti-resonant nanoplate in the hollow core of a photonic crystal fiber, and predict the stable dark trapping of nanoplate at core center against both translational and rotational motion. The results show that spatial and angular position of nano-scale objects in hollow waveguides can be optically controlled by launching beams with appropriately synthesized transverse field profiles.

6.
Phys Rev Lett ; 122(14): 143902, 2019 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-31050443

RESUMEN

Broadband-tunable sources of circularly polarized light are crucial in fields such as laser science, biomedicine, and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components and are limited by the availability of suitably transparent crystals and glasses. Although a gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path lengths, and high Raman conversion efficiency, it is unable to preserve a circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on a helically twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining a circular polarization state against external perturbations. This makes it possible to generate pure circularly polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain-suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with a fully controllable polarization state.

7.
Nat Commun ; 8(1): 813, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993618

RESUMEN

Gas-filled hollow-core photonic crystal fibre is being used to generate ever wider supercontinuum spectra, in particular via dispersive wave emission in the deep and vacuum ultraviolet, with a multitude of applications. Dispersive waves are the result of nonlinear transfer of energy from a self-compressed soliton, a process that relies crucially on phase-matching. It was recently predicted that, in the strong-field regime, the additional transient anomalous dispersion introduced by gas ionization would allow phase-matched dispersive wave generation in the mid-infrared-something that is forbidden in the absence of free electrons. Here we report the experimental observation of such mid-infrared dispersive waves, embedded in a 4.7-octave-wide supercontinuum that uniquely reaches simultaneously to the vacuum ultraviolet, with up to 1.7 W of total average power.Dispersive wave emission in gas-filled hollow-core photonic crystal fibres has been possible in the visible and ultraviolet via the optical Kerr effect. Here, Köttig et al. demonstrate dispersive waves generated by an additional transient anomalous dispersion from gas ionization in the mid-infrared.

8.
PLoS One ; 12(10): e0187036, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29073209

RESUMEN

The role of river discharge, wind and tide on the extension and variability of the Tagus River plume was analyzed from 2003 to 2015. This study was performed combining daily images obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor located onboard the Aqua and Terra satellites. Composites were generated by averaging pixels with the same forcing conditions. River discharge shows a strong relation with the extension of the Tagus plume. The plume grows with the increasing river discharge and express a two day lag caused by the long residence time of water within the estuary. The Tagus turbid plume was found to be smaller under northerly and easterly winds, than under southerly and westerly winds. It is suggested that upwelling favoring winds provoke the offshore movement of the plume material with a rapidly decrease in turbidity values whereas downwelling favoring winds retain plume material in the north coast close to the Tagus mouth. Eastern cross-shore (oceanward) winds spread the plume seaward and to the north following the coast geometry, whereas western cross-shore (landward) winds keep the plume material in both alongshore directions occupying a large part of the area enclosed by the bay. Low tides produce larger and more turbid plumes than high tides. In terms of fortnightly periodicity, the maximum plume extension corresponding to the highest turbidity is observed during and after spring tides. Minimum plume extension associated with the lowest turbidity occurs during and after neap tides.


Asunto(s)
Monitoreo del Ambiente , Ríos , Imágenes Satelitales , Sequías , Inundaciones , España , Viento
9.
Phys Rev Lett ; 119(25): 253903, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303338

RESUMEN

Many reports on stimulated Raman scattering in mixtures of Raman-active and noble gases indicate that the addition of a dispersive buffer gas increases the phase mismatch to higher-order Stokes and anti-Stokes sidebands, resulting in a preferential conversion to the first few Stokes lines, accompanied by a significant reduction in the Raman gain due to collisions with gas molecules. Here we report that, provided the dispersion can be precisely controlled, the effective Raman gain in a gas-filled hollow-core photonic crystal fiber can actually be significantly enhanced when a buffer gas is added. This counterintuitive behavior occurs when the nonlinear coupling between the interacting fields is strong and can result in a performance similar to that of a pure Raman-active gas, but at a much lower total gas pressure, allowing competing effects such as Raman backscattering to be suppressed. We report high modal purity in all the emitted sidebands, along with anti-Stokes conversion efficiencies as high as 5% in the visible and 2% in the ultraviolet. This new class of gas-based waveguide device, which allows the nonlinear optical response to be beneficially pressure-tuned by the addition of buffer gases, may find important applications in laser science and spectroscopy.

10.
Opt Lett ; 41(12): 2811-4, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27304295

RESUMEN

We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA