Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ageing Res Rev ; 89: 101979, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37328112

RESUMEN

Therapeutic strategies for neurodegenerative disorders have commonly targeted individual aspects of the disease pathogenesis to little success. Neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by several pathological features. In AD and PD, there is an abnormal accumulation of toxic proteins, increased inflammation, decreased synaptic function, neuronal loss, increased astrocyte activation, and perhaps a state of insulin resistance. Epidemiological evidence has revealed a link between AD/PD and type 2 diabetes mellitus, with these disorders sharing some pathological commonalities. Such a link has opened up a promising avenue for repurposing antidiabetic agents in the treatment of neurodegenerative disorders. A successful therapeutic strategy for AD/PD would likely require a single or several agents which target the separate pathological processes in the disease. Targeting cerebral insulin signalling produces numerous neuroprotective effects in preclinical AD/PD brain models. Clinical trials have shown the promise of approved diabetic compounds in improving motor symptoms of PD and preventing neurodegenerative decline, with numerous further phase II trials and phase III trials underway in AD and PD populations. Alongside insulin signalling, targeting incretin receptors in the brain represents one of the most promising strategies for repurposing currently available agents for the treatment of AD/PD. Most notably, glucagon-like-peptide-1 (GLP-1) receptor agonists have displayed impressive clinical potential in preclinical and early clinical studies. In AD the GLP-1 receptor agonist, liraglutide, has been demonstrated to improve cerebral glucose metabolism and functional connectivity in small-scale pilot trials. Whilst in PD, the GLP-1 receptor agonist exenatide is effective in restoring motor function and cognition. Targeting brain incretin receptors reduces inflammation, inhibits apoptosis, prevents toxic protein aggregation, enhances long-term potentiation and autophagy as well as restores dysfunctional insulin signalling. Support is also increasing for the use of additional approved diabetic treatments, including intranasal insulin, metformin hydrochloride, peroxisome proliferator-activated nuclear receptor γ agonists, amylin analogs, and protein tyrosine phosphatase 1B inhibitors which are in the investigation for deployment in PD and AD treatment. As such, we provide a comprehensive review of several promising anti-diabetic agents for the treatment of AD and PD.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Incretinas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Enfermedades Neurodegenerativas/metabolismo , Insulina/uso terapéutico , Inflamación/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Mol Psychiatry ; 28(1): 217-229, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36258018

RESUMEN

Despite an ever-growing prevalence and increasing economic burden of Alzheimer's disease (AD) and Parkinson's disease (PD), recent advances in drug development have only resulted in minimally effective treatment. In AD, along with amyloid and tau phosphorylation, there is an associated increase in inflammation/glial activation, a decrease in synaptic function, an increase in astrocyte activation, and a state of insulin resistance. In PD, along with α-synuclein accumulation, there is associated inflammation, synaptic dysfunction, dopaminergic neuronal loss, and some data to suggest insulin resistance. Therapeutic strategies for neurodegenerative disorders have commonly targeted individual pathological processes. An effective treatment might require either utilization of multiple drugs which target the individual pathological processes which underlie the neurodegenerative disease or the use of a single agent which could influence multiple pathological processes. Insulin and incretins are compounds with multiple effects on neurodegenerative processes. Preclinical studies have demonstrated that GLP-1 receptor agonists reduce neuroinflammation, reduce tau phosphorylation, reduce amyloid deposition, increase synaptic function, and improve memory formation. Incretin mimetics may act through the restoration of insulin signaling pathways, inducing further neuroprotective effects. Currently, phase 2 and phase 3 trials are underway in AD and PD populations. Here, we provide a comprehensive review of the therapeutic potential of incretin mimetics and insulin in AD and PD.


Asunto(s)
Enfermedad de Alzheimer , Incretinas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Incretinas/uso terapéutico , Inflamación , Insulina/uso terapéutico , Resistencia a la Insulina , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo
3.
Mol Psychiatry ; 27(4): 2019-2029, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35125495

RESUMEN

Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 older, cognitively impaired patients and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer 11C-BU99008, 18F-FDG and 18F-florbetaben PET, and T1-weighted MRI. Differences between cognitively impaired patients and healthy controls in regional and voxel-wise levels of astrocyte reactivity, glucose metabolism, grey matter volume and amyloid load were explored, and their relationship to each other was assessed using Biological Parametric Mapping (BPM). Amyloid beta (Aß)-positive patients showed greater 11C-BU99008 uptake compared to controls, except in the temporal lobe, whilst further increased 11C-BU99008 uptake was observed in Mild Cognitive Impairment subjects compared to those with Alzheimer's disease in the frontal, temporal and cingulate cortices. BPM correlations revealed that regions which showed reduced 11C-BU99008 uptake in Aß-positive patients compared to controls, such as the temporal lobe, also showed reduced 18F-FDG uptake and grey matter volume, although the correlations with 18F-FDG uptake were not replicated in the ROI analysis. BPM analysis also revealed a regionally-dynamic relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas of the temporal lobe and cingulate cortices was associated with reduced 11C-BU99008 uptake, whilst increased amyloid uptake in primary motor and sensory areas (in which amyloid deposition occurs later) was associated with increased 11C-BU99008 uptake. These novel observations add to the hypothesis that while astrocyte reactivity may be triggered by early Aß-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy and glucose hypometabolism, although the evidence for glucose hypometabolism here is less strong.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Glucosa/metabolismo , Sustancia Gris/metabolismo , Humanos , Imidazoles , Indoles , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
4.
BMJ ; 374: n1648, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312178

RESUMEN

Since its emergence in Wuhan, China, covid-19 has spread and had a profound effect on the lives and health of people around the globe. As of 4 July 2021, more than 183 million confirmed cases of covid-19 had been recorded worldwide, and 3.97 million deaths. Recent evidence has shown that a range of persistent symptoms can remain long after the acute SARS-CoV-2 infection, and this condition is now coined long covid by recognized research institutes. Studies have shown that long covid can affect the whole spectrum of people with covid-19, from those with very mild acute disease to the most severe forms. Like acute covid-19, long covid can involve multiple organs and can affect many systems including, but not limited to, the respiratory, cardiovascular, neurological, gastrointestinal, and musculoskeletal systems. The symptoms of long covid include fatigue, dyspnea, cardiac abnormalities, cognitive impairment, sleep disturbances, symptoms of post-traumatic stress disorder, muscle pain, concentration problems, and headache. This review summarizes studies of the long term effects of covid-19 in hospitalized and non-hospitalized patients and describes the persistent symptoms they endure. Risk factors for acute covid-19 and long covid and possible therapeutic options are also discussed.


Asunto(s)
COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/etiología , COVID-19/terapia , Ensayos Clínicos como Asunto , Terapia Combinada/métodos , Terapia Combinada/normas , Reposicionamiento de Medicamentos , Carga Global de Enfermedades , Humanos , Incidencia , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Índice de Severidad de la Enfermedad , Síndrome Post Agudo de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...