Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 7: 45276, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374744

RESUMEN

Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder.

2.
Phys Rev Lett ; 110(18): 186806, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23683235

RESUMEN

Quantum coherent transport of surface states in a mesoscopic nanowire of the three-dimensional topological insulator Bi(2}Se(3) is studied in the weak-disorder limit. At very low temperatures, many harmonics are evidenced in the Fourier transform of Aharonov-Bohm oscillations, revealing the long phase coherence length of spin-chiral Dirac fermions. Remarkably, from their exponential temperature dependence, we infer an unusual 1/T power law for the phase coherence length L(φ)(T). This decoherence is typical for quasiballistic fermions weakly coupled to their environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA