Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 19(3): e202300608, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095428

RESUMEN

The synthesis and antiproliferative evaluation of novel d-glucopyranuronamide-containing nucleosides is described. Based on our previously reported anticancer d-glucuronamide-based nucleosides, new analogues comprising N/O-dodecyl or N-propargyl substituents at the glucuronamide unit and anomerically-N-linked 2-acetamido-6-chloropurine, 6-chloropurine or 4-(6-chloropurinyl)methyl triazole motifs were synthesized in 4-6 steps starting from acetonide-protected glucofuranurono-6,3-lactone. The methodologies were based on the access to N-substituted glycopyranuronamide precursors, namely 1,2-O-acetyl derivatives or glucuronoamidyl azides for further nucleobase N-glycosylation or 1,3-dipolar cycloaddition with N9 - and N7 -propargyl-6-chloropurines, respectively. N-Propargyl glucuronamide-based N9 -purine nucleosides were converted into (triazolyl)methyl amide-6,6-linked pseudodisaccharide nucleosides via cycloaddition with methyl 6-azido-glucopyranoside. A CuI/Amberlyst A-21 catalytic system employed in the cycloaddition reactions also effected conversion into 6-dimethylaminopurine nucleosides. Antiproliferative evaluation in chronic myeloid leukemia (K562) and breast cancer (MCF-7) cells revealed significant effects exhibited by the synthesized monododecylated purine-containing nucleosides. A N-propargyl 3-O-dodecyl glucuronamide derivative comprising a N9 -ß-linked 6-chloropurine moiety was the most active compound against MCF-7 cells (GI50 =11.9 µM) while a related α-(purinyl)methyltriazole nucleoside comprising a N7 -linked 6-chloropurine moiety exhibited the highest activity against K562 cells (GI50 =8.0 µM). Flow cytometry and immunoblotting analysis of apoptosis-related proteins in K562 cells treated with the N-propargyl 3-O-dodecyl glucuronamide-based N9 -linked 6-chloropurine nucleoside indicated that it acts via apoptosis induction.


Asunto(s)
Amidas , Nucleósidos , Humanos , Nucleósidos/farmacología , Amidas/farmacología , Nucleósidos de Purina , Glucuronatos
2.
J Am Chem Soc ; 143(11): 4253-4267, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33687213

RESUMEN

Halogen bonds (XBs) are noncovalent interactions where halogen atoms act as electrophilic species interacting with Lewis bases. These interactions are relevant in biochemical systems being increasingly explored in drug discovery, mainly to modulate protein-ligand interactions, but are also found in engineered protein or nucleic acid systems. In this work, we report direct evidence for the existence of XBs in the context of biological membrane systems, thus expanding the scope of application of these interactions. Indeed, our molecular dynamics simulations show the presence of favorable interactions between halobenzene derivatives and both phosphate or ester oxygen acceptors from a model phospholipid bilayer, thus supporting the existence of XB-mediated phospholipid-halogen recognition phenomena influencing the membrane insertion profile of the ligands and their orientational preferences. This represents a relevant interaction, previously overlooked, eventually determining the pharmacological or toxicological activity of halogenated compounds and hence with potential implications in drug discovery and development, a place where such species account for a significant part of the chemical space. We also provide insights into a potential role for XBs in the water-to-membrane insertion of halogenated ligands as XBs are systematically observed during this process. Therefore, our data strongly suggest that, as the ubiquitous hydrogen bond, XBs should be accounted for in the development of membrane partition models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...