Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychopharmacology (Berl) ; 239(1): 229-242, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34888704

RESUMEN

RATIONALE: Major depressive disorder (MDD) is a leading cause of disability worldwide but currently prescribed treatments do not adequately ameliorate the disorder in a significant portion of patients. Hence, a better appreciation of its aetiology may lead to the development of novel therapies. OBJECTIVES: In the present study, we have built on our previous findings indicating a role for protease-activated receptor-2 (PAR2) in sickness behaviour to determine whether the PAR2 activator, AC264613, induces behavioural changes similar to those observed in depression-like behaviour. METHODS: AC264613-induced behavioural changes were examined using the open field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), and novel object recognition test (NOR). Whole-cell patch clamping was used to investigate the effects of PAR2 activation in the lateral habenula with peripheral and central cytokine levels determined using ELISA and quantitative PCR. RESULTS: Using a blood-brain barrier (BBB) permeable PAR2 activator, we reveal that AC-264613 (AC) injection leads to reduced locomotor activity and sucrose preference in mice but is without effect in anxiety and memory-related tasks. In addition, we show that AC injection leads to elevated blood sera IL-6 levels and altered cytokine mRNA expression within the brain. However, neither microglia nor peripheral lymphocytes are the source of these altered cytokine profiles. CONCLUSIONS: These data reveal that PAR2 activation results in behavioural changes often associated with depression-like behaviour and an inflammatory profile that resembles that seen in patients with MDD and therefore PAR2 may be a target for novel antidepressant therapies.


Asunto(s)
Trastorno Depresivo Mayor , Microglía , Animales , Citocinas , Depresión , Humanos , Ratones , Receptor PAR-2
2.
Cell Rep ; 37(13): 110148, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965424

RESUMEN

Microglia are implicated in neurodegeneration, potentially by phagocytosing neurons, but it is unclear how to block the detrimental effects of microglia while preserving their beneficial roles. The microglial P2Y6 receptor (P2Y6R) - activated by extracellular UDP released by stressed neurons - is required for microglial phagocytosis of neurons. We show here that injection of amyloid beta (Aß) into mouse brain induces microglial phagocytosis of neurons, followed by neuronal and memory loss, and this is all prevented by knockout of P2Y6R. In a chronic tau model of neurodegeneration (P301S TAU mice), P2Y6R knockout prevented TAU-induced neuronal and memory loss. In vitro, P2Y6R knockout blocked microglial phagocytosis of live but not dead targets and reduced tau-, Aß-, and UDP-induced neuronal loss in glial-neuronal cultures. Thus, the P2Y6 receptor appears to mediate Aß- and tau-induced neuronal and memory loss via microglial phagocytosis of neurons, suggesting that blocking this receptor may be beneficial in the treatment of neurodegenerative diseases.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Trastornos de la Memoria/patología , Microglía/metabolismo , Enfermedades Neurodegenerativas/patología , Fagocitosis , Receptores Purinérgicos P2/fisiología , Proteínas tau/metabolismo , Animales , Femenino , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/genética
3.
Sci Rep ; 11(1): 10309, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986302

RESUMEN

Intracellular tau inclusions are a pathological hallmark of Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and other sporadic neurodegenerative tauopathies. Recent in vitro and in vivo studies have shown that tau aggregates may spread to neighbouring cells and functionally connected brain regions, where they can seed further tau aggregation. This process is referred to as tau propagation. Here we describe an ex vivo system using organotypic hippocampal slice cultures (OHCs) which recapitulates aspects of this phenomenon. OHCs are explants of hippocampal tissue which may be maintained in culture for months. They maintain their synaptic connections and multicellular 3D architecture whilst also permitting direct control of the environment and direct access for various analysis types. We inoculated OHCs prepared from P301S mouse pups with brain homogenate from terminally ill P301S mice and then examined the slices for viability and the production and localization of insoluble phosphorylated tau. We show that following seeding, phosphorylated insoluble tau accumulate in a time and concentration dependent manner within OHCs. Furthermore, we show the ability of the conformation dependent anti-tau antibody, MC1, to compromise tau accrual in OHCs, thus showcasing the potential of this therapeutic approach and the utility of OHCs as an ex vivo model system for assessing such therapeutics.


Asunto(s)
Hipocampo/patología , Tauopatías/patología , Enfermedad de Alzheimer/patología , Animales , Hipocampo/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Fosforilación
4.
Sci Transl Med ; 12(543)2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404505

RESUMEN

We aimed to develop effective radioligands for quantifying brain O-linked-ß-N-acetyl-glucosamine (O-GlcNAc) hydrolase (OGA) using positron emission tomography in living subjects as tools for evaluating drug target engagement. Posttranslational modifications of tau, a biomarker of Alzheimer's disease, by O-GlcNAc through the enzyme pair OGA and O-GlcNAc transferase (OGT) are inversely related to the amounts of its insoluble hyperphosphorylated form. Increase in tau O-GlcNAcylation by OGA inhibition is believed to reduce tau aggregation. LSN3316612, a highly selective and potent OGA ligand [half-maximal inhibitory concentration (IC50) = 1.9 nM], emerged as a lead ligand after in silico analysis and in vitro evaluations. [3H]LSN3316612 imaged and quantified OGA in postmortem brains of rat, monkey, and human. The presence of fluorine and carbonyl functionality in LSN3316612 enabled labeling with positron-emitting fluorine-18 or carbon-11. Both [18F]LSN3316612 and [11C]LSN3316612 bound reversibly to OGA in vivo, and such binding was blocked by pharmacological doses of thiamet G, an OGA inhibitor of different chemotype, in monkeys. [18F]LSN3316612 entered healthy human brain avidly (~4 SUV) without radiodefluorination or adverse effect from other radiometabolites, as evidenced by stable brain total volume of distribution (VT) values by 110 min of scanning. Overall, [18F]LSN3316612 is preferred over [11C]LSN3316612 for future human studies, whereas either may be an effective positron emission tomography radioligand for quantifying brain OGA in rodent and monkey.


Asunto(s)
Hidrolasas , beta-N-Acetilhexosaminidasas , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosamina , Ligandos , Tomografía de Emisión de Positrones , Ratas , beta-N-Acetilhexosaminidasas/metabolismo
5.
EJNMMI Res ; 10(1): 20, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32172476

RESUMEN

BACKGROUND: Previous studies found that [18F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [18F]LSN3316612 for human clinical research. METHODS: Kinetic evaluation of [18F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs. Total distribution volume (VT) estimates were compared for the one- and two-tissue compartment models with the arterial input function. Test-retest variability and reliability were evaluated via mean difference and intraclass correlation coefficient (ICC). The time stability of VT was assessed down to a 30-min scan time. An alternative quantification method for [18F]LSN3316612 binding without blood was also investigated to assess the possibility of eliminating arterial sampling. RESULTS: Brain uptake was generally high and could be quantified as VT with excellent identifiability using the two-tissue compartment model. [18F]LSN3316612 exhibited good absolute test-retest variability (12.5%), but the arithmetic test-retest variability was far from 0 (11.3%), reflecting a near-uniform increase of VT on the retest scan in nine of 10 volunteers. VT values were stable after 110 min in all brain regions, suggesting that no radiometabolites accumulated in the brain. Measurements obtained using only brain activity (i.e., area under the curve (AUC) from 150-180 min) correlated strongly with regional VT values during test-retest conditions (R2 = 0.84), exhibiting similar reliability to VT (ICC = 0.68 vs. 0.64). Estimated radiation exposure for [18F]LSN3316612 PET was 20.5 ± 2.1 µSv/MBq, comparable to other 18F-labeled radioligands for brain imaging. CONCLUSIONS: [18F]LSN3316612 is an excellent PET radioligand for imaging O-GlcNAcase in the human brain. Alternative quantification without blood is possible, at least for within-subject repeat studies. However, the unexplained increase of VT under retest conditions requires further investigation.

6.
J Nucl Med ; 60(1): 129-134, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30213846

RESUMEN

Accumulation of hyperphosphorylated tau, a microtubule-associated protein, plays an important role in the progression of Alzheimer disease. Animal studies suggest that one strategy for treating Alzheimer disease and related tauopathies may be inhibition of O-GlcNAcase (OGA), which may subsequently decrease pathologic tau phosphorylation. Here, we report the pharmacokinetics of a novel PET radioligand, 18F-LSN3316612, which binds with high affinity and selectivity to OGA. Methods: PET imaging was performed on rhesus monkeys at baseline and after administration of either thiamet-G, a potent OGA inhibitor, or nonradioactive LSN3316612. The density of the enzyme was calculated as distribution volume using a 2-tissue-compartment model and serial concentrations of parent radioligand in arterial plasma. The radiation burden for future studies was based on whole-body imaging of monkeys. Oga∆Br, a mouse brain-specific knockout of Oga, was also scanned to assess the specificity of the radioligand for its target enzyme. Results: Uptake of radioactivity in monkey brain was high (∼5 SUV) and followed by slow washout. The highest uptake was in the amygdala, followed by striatum and hippocampus. Pretreatment with thiamet-G or nonradioactive LSN3316612 reduced brain uptake to a low and uniform concentration in all regions, corresponding to an approximately 90% decrease in distribution volume. Whole-body imaging of rhesus monkeys showed high uptake in kidney, spleen, liver, and testes. In Oga∆Br mice, brain uptake of 18F-LSN3316612 was reduced by 82% compared with control mice. Peripheral organs were unaffected in Oga∆Br mice, consistent with loss of OGA expression exclusively in the brain. The effective dose of 18F-LSN3316612 in humans was calculated to be 22 µSv/MBq, which is typical for 18F-labeled radioligands. Conclusion: These results show that 18F-LSN3316612 is an excellent radioligand for imaging and quantifying OGA in rhesus monkeys and mice. On the basis of these data, 18F-LSN3316612 merits evaluation in humans.


Asunto(s)
Acetamidas/farmacocinética , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Piperidinas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Tiazoles/farmacocinética , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Transporte Biológico , Procesamiento de Imagen Asistido por Computador , Cinética , Ligandos , Macaca mulatta , Ratones , Ratones Noqueados , Radiometría , Distribución Tisular
7.
J Neurosci ; 25(8): 2050-61, 2005 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-15728845

RESUMEN

Neurogenesis requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown here that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the olfactory epithelium. These include both Mash1+ olfactory receptor neuron (ORN) progenitors and NeuroD+ ORN precursors. Disruption of Runx1 function in vivo does not cause a change in Mash1 expression but leads to a decrease in the number of NeuroD+ neuronal precursors and an increase in differentiated ORNs. These effects result in premature and ectopic ORN differentiation. It is shown further that exogenous Runx1 expression in cultured olfactory neural progenitors causes an expansion of the mitotic cell population. In agreement with these findings, exogenous Runx1 expression also promotes cortical neural progenitor cell proliferation without inhibiting neuronal differentiation. These effects are phenocopied by a chimeric protein containing ETO, the eight twenty one transcriptional repressor, fused to the Runx1 DNA-binding domain, which suggests the involvement of transcription repression mechanisms. Consistent with this possibility, Runx1 represses transcription driven by the promoter of the cell cycle inhibitor p21Cip 1 in cortical progenitors. Together, these findings suggest a previously unrecognized role for Runx1 in coordinating the proliferation and neuronal differentiation of selected populations of neural progenitors.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso/fisiología , Mucosa Olfatoria/citología , Neuronas Receptoras Olfatorias/citología , Proteínas Proto-Oncogénicas/fisiología , Células Madre/citología , Telencéfalo/citología , Factores de Transcripción/fisiología , Transcripción Genética , Sustitución de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Células Cultivadas/citología , Células Cultivadas/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones , Mutación Missense , Proteínas del Tejido Nervioso/genética , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/fisiología , Mutación Puntual , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/genética , Proteína 1 Compañera de Translocación de RUNX1 , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/fisiología , Células Madre/metabolismo , Telencéfalo/embriología , Factores de Transcripción/genética
8.
Mol Cell Biol ; 24(19): 8395-407, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15367661

RESUMEN

Transcriptional corepressors of the Groucho (Gro)/TLE family play important roles during a variety of developmental pathways, including neuronal differentiation. In particular, they act as negative regulators of neurogenesis, together with Hairy/Enhancer of split (Hes) DNA-binding proteins. The interaction with Hes1 leads to Gro/TLE hyperphosphorylation and increased transcription repression activity in mammalian cells, but the underlying molecular mechanisms are poorly characterized. We now show that Gro/TLE1 is phosphorylated in vivo by protein kinase CK2. This phosphorylation occurs at serine 239 within the conserved CcN domain present in all Gro/TLE family members. Mutation of serine 239 into alanine decreases Hes1-induced hyperphosphorylation of Gro/TLE1 and also reduces its nuclear association and transcription repression activity. We demonstrate further that Gro/TLE1 inhibits the transition of cortical neural progenitors into neurons and that its antineurogenic activity is inhibited by a serine-239-alanine mutation but not by a serine-239-glutamate mutation. These results suggest that CK2 phosphorylation of serine 239 of Gro/TLE1 is important for its function during neuronal differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Neuronas/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Quinasa de la Caseína II , Núcleo Celular/metabolismo , Proteínas Co-Represoras , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Neuronas/metabolismo , Fosforilación , Serina/metabolismo , Factor de Transcripción HES-1
9.
J Biol Chem ; 277(52): 51049-57, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12397081

RESUMEN

Transcriptional corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family are involved in a variety of cell differentiation mechanisms in both invertebrates and vertebrates. They become recruited to specific promoter regions by forming complexes with a number of different DNA-binding proteins thereby contributing to the regulation of multiple genes. To understand how the functions of Gro/TLE proteins are regulated, it was asked whether their ability to mediate transcriptional repression might be controlled by cell cycle-dependent phosphorylation events. It is shown here that activation of p34(cdc2) kinase (cdc2) with okadaic acid is correlated with hyperphosphorylation of Gro/TLEs. Moreover, pharmacological inhibition of cdc2 activity results in Gro/TLE dephosphorylation. In agreement with these findings, a purified cdc2-cyclin B complex can directly phosphorylate Gro/TLEs in vitro. Two separate Gro/TLE domains, the CcN and SP regions, contain sequences that are phosphorylated by cdc2. Deletion of these sequences is correlated with loss of Gro/TLE phosphorylation by cdc2 in vitro and okadaic acid-induced Gro/TLE hyperphosphorylation in vivo. In addition, Gro/TLEs are phosphorylated during the G(2)/M phase of the cell cycle, and this is correlated with a decreased nuclear interaction. Finally, the transcription repression ability of Gro/TLEs is enhanced by pharmacological inhibition of cdc2. Taken together, these results demonstrate that Gro/TLE proteins are phosphorylated as a function of the cell cycle and implicate phosphorylation events occurring during mitosis in the negative regulation of Gro/TLE activity.


Asunto(s)
Ciclo Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular , Núcleo Celular/fisiología , Drosophila , Elementos de Facilitación Genéticos , Células HeLa , Humanos , Células Jurkat , Mitosis , Ácido Ocadaico/farmacología , Fosfatos/metabolismo , Fosforilación , Ratas , Proteínas Recombinantes/metabolismo , Segmento Externo de la Célula en Bastón/fisiología , Transcripción Genética/efectos de los fármacos , Transfección
10.
Mol Med ; 8(1): 33-41, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11984004

RESUMEN

BACKGROUND: MUC1, a membrane-tethered glycoprotein that is expressed on a number of epithelial cell types in vivo, is over-expressed in adenocarcinomas and thought to play a significant role in tumour progression and metastasis. Hence, elucidation of the mechanisms of regulation of MUC1 gene expression is of considerable biological importance. Our aim was to evaluate regulation of MUC1 expression in vivo. MATERIALS AND METHODS: DNase I hypersensitive sites (DHS) were mapped in chromatin from human cell lines and human MUC1 transgenic mice. MUC1 expression was evaluated by RT-PCR and Northern blots. RESULTS: We identified two novel DHS in the MUC1 promoter at -750 bp and -250 bp from the transcriptional start site. These DHS were detected in human cell lines and in a human MUC1 transgene in mice. The -750 DHS was apparent in many cell types irrespective of the level of MUC1 expression but the -250 DHS was only evident in cells that express MUC1 and its intensity correlated with the abundance of MUC1 transcripts. The -250 DHS became undetectable in cell lines representing a transition from colon adenoma to carcinoma, commensurate with a significant reduction in MUC1 expression. CONCLUSIONS: The -750 and -250 regions are conserved between the human MUC1 and mouse Muc1 genes and may be associated with functionally important genetic elements. The DHS at -250 is in the vicinity of previously defined purine/pyrimidine mirror repeat elements that may form intramolecular H-DNA structures, which can alter the accessibility of chromatin to regulatory proteins.


Asunto(s)
Regulación de la Expresión Génica , Mucina-1/genética , Regiones Promotoras Genéticas/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenoma/genética , Adenoma/patología , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , ADN/genética , ADN/metabolismo , Huella de ADN , Desoxirribonucleasa I/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Mucina-1/biosíntesis , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Células Tumorales Cultivadas
11.
Mol Cell Biol ; 22(2): 389-99, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11756536

RESUMEN

Transcriptional corepressors of the Groucho/transducin-like Enhancer of split (Gro/TLE) family regulate a number of developmental pathways in both invertebrates and vertebrates. They form transcription repression complexes with members of several DNA-binding protein families and participate in the regulation of the expression of numerous genes. Despite their pleiotropic roles, little is known about the mechanisms that regulate the functions of Gro/TLE proteins. It is shown here that Gro/TLEs become hyperphosphorylated in response to neural cell differentiation and interaction with the DNA-binding cofactor Hairy/Enhancer of split 1 (Hes1). Hyperphosphorylation of Gro/TLEs is correlated with a tight association with the nuclear compartment through interaction with chromatin, suggesting that hyperphosphorylated Gro/TLEs may mediate transcriptional repression via chromatin remodeling mechanisms. Pharmacological inhibition of protein kinase CK2 reduces the Hes1-induced hyperphosphorylation of Gro/TLEs and causes a decrease in the chromatin association of the latter. Moreover, the transcription repression activity of Gro/TLEs is reduced by protein kinase CK2 inhibition. Consistent with these observations, Gro/TLEs are phosphorylated in vitro by purified protein kinase CK2. Taken together, these results implicate protein kinase CK2 in Gro/TLE functions. They suggest further that this kinase is involved in a hyperphosphorylation mechanism activated by Hes1 that promotes the transcription repression functions of Hes1-Gro/TLE protein complexes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas , Proteínas Represoras/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Quinasa de la Caseína II , Diferenciación Celular , Núcleo Celular/metabolismo , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Proteínas de Unión al ADN/genética , Inhibidores Enzimáticos/farmacología , Proteínas de Homeodominio/genética , Humanos , Ratones , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Factor de Transcripción HES-1 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA