Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 946344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710876

RESUMEN

Transcription factor Ap2b (TFAP2B), an AP-2 family transcription factor, binds to the palindromic consensus DNA sequence, 5'-GCCN3-5GGC-3'. Mice lacking functional Tfap2b gene die in the perinatal or neonatal period with cystic dilatation of the kidney distal tubules and collecting ducts, a phenotype resembling autosomal recessive polycystic kidney disease (ARPKD). Human ARPKD is caused by mutations in PKHD1, DZIP1L, and CYS1, which are conserved in mammals. In this study, we examined the potential role of TFAP2B as a common regulator of Pkhd1 and Cys1. We determined the transcription start site (TSS) of Cys1 using 5' Rapid Amplification of cDNA Ends (5'RACE); the TSS of Pkhd1 has been previously established. Bioinformatic approaches identified cis-regulatory elements, including two TFAP2B consensus binding sites, in the upstream regulatory regions of both Pkhd1 and Cys1. Based on reporter gene assays performed in mouse renal collecting duct cells (mIMCD-3), TFAP2B activated the Pkhd1 and Cys1 promoters and electromobility shift assay (EMSA) confirmed TFAP2B binding to the in silico identified sites. These results suggest that Tfap2b participates in a renal epithelial cell gene regulatory network that includes Pkhd1 and Cys1. Disruption of this network impairs renal tubular differentiation, causing ductal dilatation that is the hallmark of recessive PKD.

2.
Dev Dyn ; 251(9): 1524-1534, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33728725

RESUMEN

BACKGROUND: Genetic tools to study gene function and the fate of cells in the anterior limb bud are very limited. RESULTS: We describe a transgenic mouse line expressing CreERT2 from the Aristaless-like 4 (Alx4) promoter that induces recombination in the anterior limb. Cre induction at embryonic day 8.5 revealed that Alx4-CreERT2 labeled cells using the mTmG Cre reporter contributed to anterior digits I to III as well as the radius of the forelimb. Cre activity is expanded further along the AP axis in the hindlimb than in the forelimb resulting in some Cre reporter cells contributing to digit IV. Induction at later time points labeled cells that become progressively restricted to more anterior digits and proximal structures. Comparison of Cre expression from the Alx4 promoter transgene with endogenous Alx4 expression reveals Cre expression is slightly expanded posteriorly relative to the endogenous Alx4 expression. Using Alx4-CreERT2 to induce loss of intraflagellar transport 88 (Ift88), a gene required for ciliogenesis, hedgehog signaling, and limb patterning, did not cause overt skeletal malformations. However, the efficiency of deletion, time needed for Ift88 protein turnover, and for cilia to regress may hinder using this approach to analyze cilia in the limb. Alx4-CreERT2 is also active in the mesonephros and nephric duct that contribute to the collecting tubules and ducts of the adult nephron. Embryonic activation of the Alx4-CreERT2 in the Ift88 conditional line results in cyst formation in the collecting tubules/ducts. CONCLUSION: Overall, the Alx4-CreERT2 line will be a new tool to assess cell fates and analyze gene function in the anterior limb, mesonephros, and nephric duct.


Asunto(s)
Proteínas Hedgehog , Factores de Transcripción , Animales , Extremidades , Proteínas Hedgehog/genética , Proteínas de Homeodominio , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Transgénicos , Factores de Transcripción/genética , Transgenes
3.
Sci Rep ; 11(1): 18274, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521872

RESUMEN

Mutation of the Cys1 gene underlies the renal cystic disease in the Cys1cpk/cpk (cpk) mouse that phenocopies human autosomal recessive polycystic kidney disease (ARPKD). Cystin, the protein product of Cys1, is expressed in the primary apical cilia of renal ductal epithelial cells. In previous studies, we showed that cystin regulates Myc expression via interaction with the tumor suppressor, necdin. Here, we demonstrate rescue of the cpk renal phenotype by kidney-specific expression of a cystin-GFP fusion protein encoded by a transgene integrated into the Rosa26 locus. In addition, we show that expression of the cystin-GFP fusion protein in collecting duct cells down-regulates expression of Myc in cpk kidneys. Finally, we report the first human patient with an ARPKD phenotype due to homozygosity for a deleterious splicing variant in CYS1. These findings suggest that mutations in Cys1/CYS1 cause an ARPKD phenotype in mouse and human, respectively, and that the renal cystic phenotype in the mouse is driven by overexpression of the Myc proto-oncogene.


Asunto(s)
Proteínas de la Membrana/genética , Riñón Poliquístico Autosómico Recesivo/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Preescolar , Regulación hacia Abajo , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Transgénicos , Riñón Poliquístico Autosómico Recesivo/patología
4.
Cancer Res ; 76(13): 3978-88, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27216178

RESUMEN

The glycosyltransferase ST6Gal-I, which adds α2-6-linked sialic acids to substrate glycoproteins, has been implicated in carcinogenesis; however, the nature of its pathogenic role remains poorly understood. Here we show that ST6Gal-I is upregulated in ovarian and pancreatic carcinomas, enriched in metastatic tumors, and associated with reduced patient survival. Notably, ST6Gal-I upregulation in cancer cells conferred hallmark cancer stem-like cell (CSC) characteristics. Modulating ST6Gal-I expression in pancreatic and ovarian cancer cells directly altered CSC spheroid growth, and clonal variants with high ST6Gal-I activity preferentially survived in CSC culture. Primary ovarian cancer cells from patient ascites or solid tumors sorted for α2-6 sialylation grew as spheroids, while cells lacking α2-6 sialylation remained as single cells and lost viability. ST6Gal-I also promoted resistance to gemcitabine and enabled the formation of stably resistant colonies. Gemcitabine treatment of patient-derived xenograft tumors enriched for ST6Gal-I-expressing cells relative to pair-matched untreated tumors. ST6Gal-I also augmented tumor-initiating potential. In limiting dilution assays, subcutaneous tumor formation was inhibited by ST6Gal-I knockdown, whereas in a chemically induced tumor initiation model, mice with conditional ST6Gal-I overexpression exhibited enhanced tumorigenesis. Finally, we found that ST6Gal-I induced expression of the key tumor-promoting transcription factors, Sox9 and Slug. Collectively, this work highlighted a previously unrecognized role for a specific glycosyltransferase in driving a CSC state. Cancer Res; 76(13); 3978-88. ©2016 AACR.


Asunto(s)
Antígenos CD/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/patología , Sialiltransferasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos CD/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis , Biomarcadores de Tumor , Estudios de Casos y Controles , Proliferación Celular , Estudios de Cohortes , Femenino , Glicosilación , Humanos , Metástasis Linfática , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Estadificación de Neoplasias , Células Madre Neoplásicas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fenotipo , Pronóstico , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Sialiltransferasas/genética , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Tasa de Supervivencia , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Physiol Rep ; 3(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26320214

RESUMEN

Polycystic kidney disease (PKD) is transmitted as either an autosomal dominant or recessive trait and is a major cause of renal failure and liver fibrosis. The cpk mouse model of autosomal recessive PKD (ARPKD) has been extensively characterized using standard histopathological techniques after euthanasia. In the current study, we sought to validate magnetic resonance microscopy (MRM) as a robust tool for assessing the ARPKD phenotype. We used MRM to evaluate the liver and kidney of wild-type and cpk animals at resolutions <100 µm and generated three-dimensional (3D) renderings for pathological evaluation. Our study demonstrates that MRM is an excellent method for evaluating the complex, 3D structural defects in this ARPKD mouse model. We found that MRM was equivalent to water displacement in assessing kidney volume. Additionally, using MRM we demonstrated for the first time that the cpk liver exhibits less extensive ductal arborization, that it was reduced in volume, and that the ductal volume was disproportionately smaller. Histopathology indicates that this is a consequence of bile duct malformation. With its reduced processing time, volumetric information, and 3D capabilities, MRM will be a useful tool for future in vivo and longitudinal studies of disease progression in ARPKD. In addition, MRM will provide a unique tool to determine whether the human disease shares the newly appreciated features of the murine biliary phenotype.

6.
J Mol Med (Berl) ; 92(10): 1045-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24984783

RESUMEN

Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. Key messages: Multiple mRNA transcripts are generated for Pkhd1 in renal tissues Pkhd1 transcription is modulated by standard splice elements and effectors Mutations in splice motifs may alter splicing to generate nonfunctional peptides.


Asunto(s)
Receptores de Superficie Celular/genética , Empalme Alternativo , Animales , Exones , Variación Genética , Humanos , Riñón/metabolismo , Ratones Endogámicos DBA , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Transcripción Genética
7.
Cilia ; 2(1): 8, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23819925

RESUMEN

BACKGROUND: Cilia are found on nearly every cell type in the mammalian body, and have been historically classified as either motile or immotile. Motile cilia are important for fluid and cellular movement; however, the roles of non-motile or primary cilia in most tissues remain unknown. Several genetic syndromes, called the ciliopathies, are associated with defects in cilia structure or function and have a wide range of clinical presentations. Much of what we know about the formation and maintenance of cilia comes from model systems like C. elegans and Chalmydomonas. Studies of mammalian cilia in live tissues have been hampered by difficulty visualizing them. RESULTS: To facilitate analyses of mammalian cilia function we generated an inducible CiliaGFP mouse by targeting mouse cDNA encoding a cilia-localized protein somatostatin receptor 3 fused to GFP (Sstr3::GFP) into the ROSA26 locus. In this system, Sstr3::GFP is expressed from the ubiquitous ROSA26 promoter after Cre mediated deletion of an upstream Neo cassette flanked by lox P sites. Fluorescent cilia labeling was observed in a variety of live tissues and after fixation. Both cell-type specific and temporally regulated cilia labeling were obtained using multiple Cre lines. The analysis of renal cilia in anesthetized live mice demonstrates that cilia commonly lay nearly parallel to the apical surface of the tubule. In contrast, in more deeply anesthetized mice the cilia display a synchronized, repetitive oscillation that ceases upon death, suggesting a relationship to heart beat, blood pressure or glomerular filtration. CONCLUSIONS: The ability to visualize cilia in live samples within the CiliaGFP mouse will greatly aid studies of ciliary function. This mouse will be useful for in vivo genetic and pharmacological screens to assess pathways regulating cilia motility, signaling, assembly, trafficking, resorption and length control and to study cilia regulated physiology in relation to ciliopathy phenotypes.

8.
J Am Soc Nephrol ; 24(3): 456-64, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23411784

RESUMEN

Disrupting the function of cilia in mouse kidneys results in rapid or slow progression of cystic disease depending on whether the animals are juveniles or adults, respectively. Renal injury can also markedly accelerate the renal cyst formation that occurs after disruption of cilia in adult mice. Rates of cell proliferation are markedly higher in juvenile than adult kidneys and increase after renal injury, suggesting that cell proliferation may enhance the development of cysts. Here, we induced cilia loss in the kidneys of adult mice in the presence or absence of a Cux-1 transgene, which maintains cell proliferation. By using this model, we were able to avoid additional factors such as inflammation and dedifferentiation, which associate with renal injury and may also influence the rate of cystogenesis. After induction of cilia loss, cystic disease was not more pronounced in adult mice with the Cux-1 transgene compared with those without the transgene. In conclusion, these data suggest that proliferation is unlikely to be the sole mechanism underlying the rapid cystogenesis observed after injury in mice that lose cilia function in adulthood.


Asunto(s)
Cilios/patología , Enfermedades Renales Quísticas/etiología , Enfermedades Renales Quísticas/patología , Túbulos Renales Proximales/patología , Animales , Proliferación Celular , Cilios/fisiología , Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Proteínas Represoras/genética , Proteínas Represoras/fisiología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/fisiología , Tamoxifeno/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
9.
Development ; 138(9): 1675-85, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21429982

RESUMEN

Skin and hair follicle morphogenesis and homeostasis require the integration of multiple signaling pathways, including Hedgehog (Hh) and Wingless (Wnt), and oriented cell divisions, all of which have been associated with primary cilia. Although studies have shown that disrupting dermal cilia causes follicular arrest and attenuated Hh signaling, little is known about the role of epidermal cilia. Here, epidermal cilia function was analyzed using conditional alleles of the ciliogenic genes Ift88 and Kif3a. At birth, epidermal cilia mutants appeared normal, but developed basaloid hyperplasia and ingrowths into the dermis of the ventrum with age. In addition, follicles in the tail were disorganized and had excess sebaceous gland lobules. Epidermal cilia mutants displayed fewer long-term label-retaining cells, suggesting altered stem cell homeostasis. Abnormal proliferation and differentiation were evident from lineage-tracing studies and showed an expansion of follicular cells into the interfollicular epidermis, as is seen during wound repair. These phenotypes were not associated with changes in canonical Wnt activity or oriented cell division. However, nuclear accumulation of the ΔNp63 transcription factor, which is involved in stratification, keratinocyte differentiation and wound repair, was increased, whereas the Hh pathway was repressed. Intriguingly, the phenotypes were not typical of those associated with loss of Hh signaling but exhibited similarities with those of mice in which ΔNp63 is overexpressed in the epidermis. Collectively, these data indicate that epidermal primary cilia may function in stress responses and epidermal homeostasis involving pathways other than those typically associated with primary cilia.


Asunto(s)
Cilios/fisiología , Células Epidérmicas , Folículo Piloso/fisiología , Homeostasis/fisiología , Fenómenos Fisiológicos de la Piel , Animales , Animales Recién Nacidos , Cilios/genética , Cilios/metabolismo , Epidermis/metabolismo , Epidermis/fisiología , Regulación del Desarrollo de la Expresión Génica , Folículo Piloso/citología , Folículo Piloso/metabolismo , Homeostasis/genética , Integrasas/genética , Integrasas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenotipo , Fenómenos Fisiológicos de la Piel/genética , Transgenes/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
10.
Curr Biol ; 19(13): R526-35, 2009 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-19602418

RESUMEN

Respect for the primary cilium has undergone a remarkable renaissance over the past decade, and it is now thought to be an essential regulator of numerous signaling pathways. The primary cilium's functions range from the movement of cells and fluid, to sensory inputs involved with olfaction and photoreception. Disruption of cilia function is involved in multiple human syndromes collectively called 'ciliopathies'. The cilium's activities are mediated by targeting of receptors, channels, and their downstream effector proteins to the ciliary or basal body compartment. These combined properties of the cilium make it a critical organelle facilitating the interactions between the cell and its environment. Here, we review many of the recent advances contributing to the ascendancy of the primary cilium and how the extraordinary complexity of this organelle inevitably assures many more exciting future discoveries.


Asunto(s)
Cilios/metabolismo , Transducción de Señal/fisiología , Animales , Cilios/ultraestructura , Proteínas Hedgehog/metabolismo , Humanos , Mecanotransducción Celular/fisiología , Neuronas Receptoras Olfatorias/citología , Células Fotorreceptoras/citología , Sensación/fisiología , Proteínas Wnt/metabolismo
11.
Methods Cell Biol ; 93: 305-30, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20409823

RESUMEN

The list of human disordered associated with cilia dysfunction, the ciliopathies, continues to highlight the importance of understanding the many roles of the long overlooked primary cilium. Much of the insights into the clinical importance of the cilium have come from analyses in model organisms, especially the mouse. However, the early embryonic lethality and severe developmental defects associated with cilia disruption has hindered progress in exploring cilia functions in late development or in adult tissues. This hurdle is being surmounted through the use of conditional alleles of genes encoding ciliary proteins and Cre deletor lines with inducible Cre activity or with lines expressing Cre in a cell-type-specific manner. Results from these approaches are providing important insights into the diverse array of cellular and tissue activities regulated by the cilium. Here we provide a recent account of the Cre/lox strategy. The generation and use of well-designed conditional alleles, as well as careful manipulation of embryonic stem cells are discussed. We also provide specific examples to illustrate the use of Cre/lox approaches to evaluate ciliary function in several tissues. With the recent characterization of multiple cilia proteomes along with efforts of several consortia to generate conditional alleles of all genes in the mouse, further use of conditional mutation approaches promise to yield many advances and surprises as we explore the functions of this increasingly complex organelle.


Asunto(s)
Cilios , Marcación de Gen/métodos , Mutación , Alelos , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Cilios/genética , Cilios/metabolismo , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Genes Reporteros , Humanos , Ratones , Ratones Transgénicos , Embarazo
12.
Am J Physiol Cell Physiol ; 294(6): C1485-98, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18385291

RESUMEN

We have utilized small interfering RNA (siRNA)-mediated depletion of the beta-COP subunit of COP-I to explore COP-I function in organellar compartmentalization and protein traffic. Reduction in beta-COP levels causes the colocalization of markers for the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC), Golgi, trans-Golgi network (TGN), and recycling endosomes in large, globular compartments. The lack of spatial differentiation of these compartments is not due to a general collapse of all cellular organelles since markers for the early endosomes and lysosomes do not redistribute to the common structures. Anterograde trafficking of the transmembrane cargo vesicular stomatitis virus membrane glycoprotein and of a subset of soluble cargoes is arrested within the common globular compartments. Similarly, recycling traffic of transferrin through the common compartment is perturbed. Furthermore, the trafficking of caveolin-1 (Cav1), a structural protein of caveolae, is arrested within the globular structures. Importantly, Cav1 coprecipitates with the gamma-subunit of COP-I, suggesting that Cav1 is a COP-I cargo. Our findings suggest that COP-I is required for the compartmentalization of the ERGIC, Golgi, TGN, and recycling endosomes and that COP-I plays a novel role in the biosynthetic transport of Cav1.


Asunto(s)
Caveolina 1/metabolismo , Compartimento Celular , Proteína Coat de Complejo I/metabolismo , Proteína Coatómero/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Secretoras/metabolismo , Caveolina 1/biosíntesis , Proteína Coat de Complejo I/genética , Proteína Coatómero/genética , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Factores de Tiempo , Transfección , Transferrina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Red trans-Golgi/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA