Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Eng Technol ; 9(3): 447-467, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29549620

RESUMEN

Patient-specific models of the ventricular myocardium, combined with the computational power to run rapid simulations, are approaching the level where they could be used for personalized cardiovascular medicine. A major remaining challenge is determining model parameters from available patient data, especially for models of the Purkinje-myocardial junctions (PMJs): the sites of initial ventricular electrical activation. There are no non-invasive methods for localizing PMJs in patients, and the relationship between the standard clinical ECG and PMJ model parameters is underexplored. Thus, this study aimed to determine the sensitivity of the QRS complex of the ECG to the anatomical location and regional number of PMJs. The QRS complex was simulated using an image-based human torso and biventricular model, and cardiac electrophysiology was simulated using Cardioid. The PMJs were modeled as discrete current injection stimuli, and the location and number of stimuli were varied within initial activation regions based on published experiments. Results indicate that the QRS complex features were most sensitive to the presence or absence of four "seed" stimuli, and adjusting locations of nearby "regional" stimuli provided finer tuning. Decreasing number of regional stimuli by an order of magnitude resulted in virtually no change in the QRS complex. Thus, a minimal 12-stimuli configuration was identified that resulted in physiological excitation, defined by QRS complex feature metrics and ventricular excitation pattern. Overall, the sensitivity results suggest that parameterizing PMJ location, rather than number, be given significantly higher priority in future studies creating personalized ventricular models from patient-derived ECGs.


Asunto(s)
Potenciales de Acción , Bloqueo de Rama/diagnóstico , Electrocardiografía/métodos , Frecuencia Cardíaca , Ventrículos Cardíacos/fisiopatología , Modelos Cardiovasculares , Modelación Específica para el Paciente , Procesamiento de Señales Asistido por Computador , Bloqueo de Rama/fisiopatología , Estudios de Casos y Controles , Humanos , Cinética , Valor Predictivo de las Pruebas , Ramos Subendocárdicos/fisiopatología , Reproducibilidad de los Resultados
2.
Lab Chip ; 17(10): 1732-1739, 2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28448074

RESUMEN

Prevailing commercialized cardiac platforms for in vitro drug development utilize planar microelectrode arrays to map action potentials, or impedance sensing to record contraction in real time, but cannot record both functions on the same chip with high spatial resolution. Here we report a novel cardiac platform that can record cardiac tissue adhesion, electrophysiology, and contractility on the same chip. The platform integrates two independent yet interpenetrating sensor arrays: a microelectrode array for field potential readouts and an interdigitated electrode array for impedance readouts. Together, these arrays provide real-time, non-invasive data acquisition of both cardiac electrophysiology and contractility under physiological conditions and under drug stimuli. Human induced pluripotent stem cell-derived cardiomyocytes were cultured as a model system, and used to validate the platform with an excitation-contraction decoupling chemical. Preliminary data using the platform to investigate the effect of the drug norepinephrine are combined with computational efforts. This platform provides a quantitative and predictive assay system that can potentially be used for comprehensive assessment of cardiac toxicity earlier in the drug discovery process.


Asunto(s)
Electrofisiología Cardíaca/instrumentación , Técnicas de Cultivo de Célula/instrumentación , Dispositivos Laboratorio en un Chip , Modelos Cardiovasculares , Potenciales de Acción/fisiología , Electrofisiología Cardíaca/métodos , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/citología , Microelectrodos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología
3.
Circ Res ; 103(7): e81-95, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18776039

RESUMEN

Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long-QT syndrome (LQTS). Biochemical and functional studies have demonstrated that I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homooligomers of the original hERG 1a isolate. Here, we examine currents produced by hERG 1a and 1a/1b channels expressed in HEK-293 cells at near-physiological temperatures. We find that heteromeric hERG 1a/1b currents are much larger than hERG 1a currents and conduct 80% more charge during an action potential. This surprising difference corresponds to a 2-fold increase in the apparent rates of activation and recovery from inactivation, thus reducing rectification and facilitating current rebound during repolarization. Kinetic modeling shows these gating differences account quantitatively for the differences in current amplitude between the 2 channel types. Drug sensitivity was also different. Compared to homomeric 1a channels, heteromeric 1a/1b channels were inhibited by E-4031 with a slower time course and a corresponding 4-fold shift in the IC50. The importance of hERG 1b in vivo is supported by the identification of a 1b-specific A8V missense mutation in 1/269 unrelated genotype-negative LQTS patients that was absent in 400 control alleles. Mutant 1bA8V expressed alone or with hERG 1a in HEK-293 cells dramatically reduced 1b protein levels. Thus, mutations specifically disrupting hERG 1b function are expected to reduce cardiac I Kr and enhance drug sensitivity, and represent a potential mechanism underlying inherited or acquired LQTS.


Asunto(s)
Sustitución de Aminoácidos , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación Missense , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Antiarrítmicos/farmacología , Línea Celular , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Cinética , Modelos Biológicos , Piperidinas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Piridinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...