Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(7): e0026724, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38958457

RESUMEN

Are two adjacent genes in the same operon? What are the order and spacing between several transcription factor binding sites? Genome browsers are software data visualization and exploration tools that enable biologists to answer questions such as these. In this paper, we report on a major update to our browser, Genome Explorer, that provides nearly instantaneous scaling and traversing of a genome, enabling users to quickly and easily zoom into an area of interest. The user can rapidly move between scales that depict the entire genome, individual genes, and the sequence; Genome Explorer presents the most relevant detail and context for each scale. By downloading the data for the entire genome to the user's web browser and dynamically generating visualizations locally, we enable fine control of zoom and pan functions and real-time redrawing of the visualization, resulting in smoother and more intuitive exploration of a genome than is possible with other browsers. Further, genome features are presented together, in-line, using familiar graphical depictions. In contrast, many other browsers depict genome features using data tracks, which have low information density and can visually obscure the relative positions of features. Genome Explorer diagrams have a high information density that provides larger amounts of genome context and sequence information to be presented in a given-sized monitor than for tracks-based browsers. Genome Explorer provides optional data tracks for the analysis of large-scale data sets and a unique comparative mode that aligns genomes at orthologous genes with synchronized zooming. IMPORTANCE: Genome browsers provide graphical depictions of genome information to speed the uptake of complex genome data by scientists. They provide search operations to help scientists find information and zoom operations to enable scientists to view genome features at different resolutions. We introduce the Genome Explorer browser, which provides extremely fast zooming and panning of genome visualizations and displays with high information density.


Asunto(s)
Programas Informáticos , Genómica/métodos , Navegador Web , Genoma/genética , Interfaz Usuario-Computador
2.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915637

RESUMEN

The Comparative Genome Dashboard is a web-based software tool for interactive exploration of the similarities and differences in gene functions between organisms. It provides a high-level graphical survey of cellular functions, and enables the user to drill down to examine subsystems of interest in greater detail. At its highest level the Comparative Dashboard contains panels for cellular systems such as biosynthesis, energy metabolism, transport, and response to stimulus. Each panel contains a set of bar graphs that plot the numbers of compounds or gene products for each organism across a set of subsystems of that panel. Users can interactively drill down to focus on subsystems of interest and see grids of compounds produced or consumed by each organism, specific GO term assignments, pathway diagrams, and links to more detailed comparison pages. For example, the dashboard enables users to compare the cofactors that a set of organisms can synthesize, the metal ions that they are able to transport, their DNA damage repair capabilities, their biofilm-formation genes, and their viral response proteins. The dashboard enables users to quickly perform comprehensive comparisons at varying levels of detail.

3.
PLoS Pathog ; 20(3): e1012093, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512999

RESUMEN

Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.


Asunto(s)
Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Animales , Humanos , Virus de la Fiebre del Valle del Rift/metabolismo , Proteínas no Estructurales Virales/metabolismo , Autofagia , Antivirales/metabolismo
4.
Biochemistry ; 63(3): 355-366, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38206111

RESUMEN

Inferring the historical and biophysical causes of diversity within protein families is a complex puzzle. A key to unraveling this problem is characterizing the rugged topography of sequence-function adaptive landscapes. Using biochemical data from a 29 = 512 combinatorial library of tobacco 5-epi-aristolochene synthase (TEAS) mutants engineered to make the native major product of Egyptian henbane premnaspirodiene synthase (HPS) and a complementary 512 mutant HPS library, we address the question of how product specificity is controlled. These data sets reveal that HPS is far more robust and resistant to mutations than TEAS, where most mutants are promiscuous. We also combine experimental data with a sequence Potts Hamiltonian model and direct coupling analysis to quantify mutant fitness. Our results demonstrate that the Hamiltonian captures variation in product outputs across both libraries, clusters native family members based on their substrate specificities, and exposes the divergent catalytic roles of couplings between the catalytic and noncatalytic domains of TEAS versus HPS. Specifically, we found that the role of the interdomain connectivities in specifying product output is more important in TEAS than connectivities within the catalytic domain. Despite being 75% identical, this property is not shared by HPS, where connectivities within the catalytic domain are more important for specificity. By solving the X-ray crystal structure of HPS, we assessed structural bases for their interdomain network differences. Last, we calculate the product profile Shannon entropies of the two libraries, which showcases that site-site connectivities also play divergent roles in catalytic accuracy.


Asunto(s)
Transferasas Alquil y Aril , Catálisis , Dominio Catalítico , Mutación
5.
Nat Prod Rep ; 40(4): 766-793, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36880348

RESUMEN

Covering: up to the beginning of 2023Many animals release volatile or semi-volatile terpenes as semiochemicals in intra- and inter-specific interactions. Terpenes are important constituents of pheromones and serve as chemical defenses to ward off predators. Despite the occurrence of terpene specialized metabolites from soft corals to mammals, the biosynthetic origin of these compounds has largely remained obscure. An increasing number of animal genome and transcriptome resources is facilitating the identification of enzymes and pathways that allow animals to produce terpenes independent of their food sources or microbial endosymbionts. Substantial evidence has emerged for the presence of terpene biosynthetic pathways such as in the formation of the iridoid sex pheromone nepetalactone in aphids. In addition, terpene synthase (TPS) enzymes have been discovered that are evolutionary unrelated to canonical plant and microbial TPSs and instead resemble precursor enzymes called isoprenyl diphosphate synthases (IDSs) in central terpene metabolism. Structural modifications of substrate binding motifs in canonical IDS proteins presumably facilitated the transition to TPS function at an early state in insect evolution. Other arthropods such as mites appear to have adopted their TPS genes from microbial sources via horizontal gene transfer. A similar scenario likely occurred in soft corals, where TPS families with closer resemblance to microbial TPSs have been discovered recently. Together, these findings will spur the identification of similar or still unknown enzymes in terpene biosynthesis in other lineages of animals. They will also help develop biotechnological applications for animal derived terpenes of pharmaceutical value or advance sustainable agricultural practices in pest management.


Asunto(s)
Transferasas Alquil y Aril , Animales , Filogenia , Transferasas Alquil y Aril/genética , Terpenos/metabolismo , Feromonas , Mamíferos
6.
Protein Sci ; 32(5): e4634, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974623

RESUMEN

Insects have evolved a chemical communication system using terpenoids, a structurally diverse class of specialized metabolites, previously thought to be exclusively produced by plants and microbes. Gene discovery, bioinformatics, and biochemical characterization of multiple insect terpene synthases (TPSs) revealed that isopentenyl diphosphate synthases (IDS), enzymes from primary isoprenoid metabolism, are their likely evolutionary progenitors. However, the mutations underlying the emergence of the TPS function remain a mystery. To address this gap, we present the first structural and mechanistic model for the evolutionary emergence of TPS function in insects. Through identifying key mechanistic differences between IDS and TPS enzymes, we hypothesize that the loss of isopentenyl diphosphate (IPP) binding motifs strongly correlates with the gain of the TPS function. Based on this premise, we have elaborated the first explicit structural definition of isopentenyl diphosphate-binding motifs (IBMs) and used the IBM definitions to examine previously characterized insect IDSs and TPSs and to predict the functions of as yet uncharacterized insect IDSs. Consistent with our hypothesis, we observed a clear pattern of disruptive substitutions to IBMs in characterized insect TPSs. In contrast, insect IDSs maintain essential consensus residues for binding IPP. Extending our analysis, we constructed the most comprehensive phylogeny of insect IDS sequences (430 full length sequences from eight insect orders) and used IBMs to predict the function of TPSs. Based on our analysis, we infer multiple, independent TPS emergence events across the class of insects, paving the way for future gene discovery efforts.


Asunto(s)
Transferasas Alquil y Aril , Terpenos , Animales , Terpenos/metabolismo , Evolución Biológica , Hemiterpenos , Transferasas Alquil y Aril/genética , Filogenia , Insectos/genética , Insectos/metabolismo , Proteínas de Plantas/genética
7.
Insect Biochem Mol Biol ; 152: 103879, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470318

RESUMEN

Insects use diverse arrays of small molecules such as metabolites of the large class of terpenes for intra- and inter-specific communication and defense. These molecules are synthesized by specialized metabolic pathways; however, the origin of enzymes involved in terpene biosynthesis and their evolution in insect genomes is still poorly understood. We addressed this question by investigating the evolution of isoprenyl diphosphate synthase (IDS)-like genes with terpene synthase (TPS) function in the family of stink bugs (Pentatomidae) within the large order of piercing-sucking Hemipteran insects. Stink bugs include species of global pest status, many of which emit structurally related 15-carbon sesquiterpenes as sex or aggregation pheromones. We provide evidence for the emergence of IDS-type TPS enzymes at the onset of pentatomid evolution over 100 million years ago, coinciding with the evolution of flowering plants. Stink bugs of different geographical origin maintain small IDS-type families with genes of conserved TPS function, which stands in contrast to the diversification of TPS genes in plants. Expanded gene mining and phylogenetic analysis in other hemipteran insects further provides evidence for an ancient emergence of IDS-like genes under presumed selection for terpene-mediated chemical interactions, and this process occurred independently from a similar evolution of IDS-type TPS genes in beetles. Our findings further suggest differences in TPS diversification in insects and plants in conjunction with different modes of gene functionalization in chemical interactions.


Asunto(s)
Heterópteros , Sesquiterpenos , Animales , Terpenos/metabolismo , Feromonas , Filogenia , Sesquiterpenos/metabolismo , Plantas/genética , Plantas/metabolismo
8.
Front Plant Sci ; 13: 1000819, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36311056

RESUMEN

The monoterpene camphor is produced in glandular secretory trichomes of the medicinal plant Artemisia annua, which also produces the antimalarial drug artemisinin. We have found that, depending on growth conditions, camphor can accumulate at levels ranging from 1- 10% leaf dry weight (LDW) in the Artemis F1 hybrid, which has been developed for commercial production of artemisinin at up to 1% LDW. We discovered that a camphor null (camphor-0) phenotype segregates in the progeny of self-pollinated Artemis material. Camphor-0 plants also show reduced levels of other less abundant monoterpenes and increased levels of the sesquiterpene precursor farnesyl pyrophosphate plus sesquiterpenes, including enzymatically derived artemisinin pathway intermediates but not artemisinin. One possible explanation for this is that high camphor concentrations in the glandular secretory trichomes play an important role in generating the hydrophobic conditions required for the non-enzymatic conversion of dihydroartemisinic acid tertiary hydroperoxide to artemisinin. We established that the camphor-0 phenotype associates with a genomic deletion that results in loss of a Bornyl diPhosphate Synthase (AaBPS) gene candidate. Functional characterization of the corresponding enzyme in vitro confirmed it can catalyze the first committed step in not only camphor biosynthesis but also in a number of other monoterpenes, accounting for over 60% of total volatiles in A. annua leaves. This in vitro analysis is consistent with loss of monoterpenes in camphor-0 plants. The AaBPS promoter drives high reporter gene expression in A. annua glandular secretory trichomes of juvenile leaves with expression shifting to non-glandular trichomes in mature leaves, which is consistent with AaBPS transcript abundance.

9.
Mol Biol Evol ; 37(7): 1907-1924, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32119077

RESUMEN

We explore sequence determinants of enzyme activity and specificity in a major enzyme family of terpene synthases. Most enzymes in this family catalyze reactions that produce cyclic terpenes-complex hydrocarbons widely used by plants and insects in diverse biological processes such as defense, communication, and symbiosis. To analyze the molecular mechanisms of emergence of terpene cyclization, we have carried out in-depth examination of mutational space around (E)-ß-farnesene synthase, an Artemisia annua enzyme which catalyzes production of a linear hydrocarbon chain. Each mutant enzyme in our synthetic libraries was characterized biochemically, and the resulting reaction rate data were used as input to the Michaelis-Menten model of enzyme kinetics, in which free energies were represented as sums of one-amino-acid contributions and two-amino-acid couplings. Our model predicts measured reaction rates with high accuracy and yields free energy landscapes characterized by relatively few coupling terms. As a result, the Michaelis-Menten free energy landscapes have simple, interpretable structure and exhibit little epistasis. We have also developed biophysical fitness models based on the assumption that highly fit enzymes have evolved to maximize the output of correct products, such as cyclic products or a specific product of interest, while minimizing the output of byproducts. This approach results in nonlinear fitness landscapes that are considerably more epistatic. Overall, our experimental and computational framework provides focused characterization of evolutionary emergence of novel enzymatic functions in the context of microevolutionary exploration of sequence space around naturally occurring enzymes.


Asunto(s)
Transferasas Alquil y Aril/genética , Epistasis Genética , Evolución Molecular , Aptitud Genética , Modelos Químicos , Artemisia annua/enzimología , Artemisia annua/genética , Sesquiterpenos Monocíclicos/metabolismo
10.
Trends Biotechnol ; 38(1): 113-127, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31427097

RESUMEN

Viral proteins evade host immune function by molecular mimicry, often achieved by short linear motifs (SLiMs) of three to ten consecutive amino acids (AAs). Motif mimicry tolerates mutations, evolves quickly to modify interactions with the host, and enables modular interactions with protein complexes. Host cells cannot easily coordinate changes to conserved motif recognition and binding interfaces under selective pressure to maintain critical signaling pathways. SLiMs offer potential for use in synthetic biology, such as better immunogens and therapies, but may also present biosecurity challenges. We survey viral uses of SLiMs to mimic host proteins, and information resources available for motif discovery. As the number of examples continues to grow, knowledge management tools are essential to help organize and compare new findings.


Asunto(s)
Secuencias de Aminoácidos/inmunología , Proteínas Virales , Animales , Linfocitos B/inmunología , Ontología de Genes , Interacciones Huésped-Patógeno/inmunología , Humanos , Imitación Molecular/inmunología , Transducción de Señal/inmunología , Biología Sintética , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
11.
Metabolites ; 9(5)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052521

RESUMEN

Interpreting changes in metabolite abundance in response to experimental treatments or disease states remains a major challenge in metabolomics. Pathway Covering is a new algorithm that takes a list of metabolites (compounds) and determines a minimum-cost set of metabolic pathways in an organism that includes (covers) all the metabolites in the list. We used five functions for assigning costs to pathways, including assigning a constant for all pathways, which yields a solution with the smallest pathway count; two methods that penalize large pathways; one that prefers pathways based on the pathway's assigned function, and one that loosely corresponds to metabolic flux. The pathway covering set computed by the algorithm can be displayed as a multi-pathway diagram ("pathway collage") that highlights the covered metabolites. We investigated the pathway covering algorithm by using several datasets from the Metabolomics Workbench. The algorithm is best applied to a list of metabolites with significant statistics and fold-changes with a specified direction of change for each metabolite. The pathway covering algorithm is now available within the Pathway Tools software and BioCyc website.

12.
Nucleic Acids Res ; 45(21): 12113-12124, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040755

RESUMEN

The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X-Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Programas Informáticos , Diatomeas/genética , Diatomeas/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Metabolismo de los Lípidos
13.
Plant Sci ; 255: 29-38, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28131339

RESUMEN

Epistasis, the interaction between mutations and the genetic background, is a pervasive force in evolution that is difficult to predict yet derives from a simple principle - biological systems are interconnected. Therefore, one effect may be intimately linked to another, hence interdependent. Untangling epistatic interactions between and within genes is a vibrant area of research. Deriving a mechanistic understanding of epistasis is a major challenge. Particularly, elucidating how epistasis can attenuate the effects of otherwise dominant mutations that control phenotypes. Using the emergence of terpene cyclization in specialized metabolism as an excellent example, this review describes the process of discovery and interpretation of dominance and epistasis in relation to current efforts. Specifically, we outline experimental approaches to isolating epistatic networks of mutations in protein structure, formally quantifying epistatic interactions, then building biochemical models with chemical mechanisms in efforts to achieve an understanding of the physical basis for epistasis. From these models we describe informed conjectures about past evolutionary events that underlie the emergence, divergence and specialization of terpene synthases to illustrate key principles of the constraining forces of epistasis in enzyme function.


Asunto(s)
Transferasas Alquil y Aril/genética , Evolución Biológica , Epistasis Genética , Genes de Plantas , Proteínas de Plantas/genética , Plantas/genética , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Conformación Proteica
14.
BMC Bioinformatics ; 17(1): 529, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27964719

RESUMEN

BACKGROUND: Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? RESULTS: We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. CONCLUSIONS: Pathway collages enable facile construction of personalized multi-pathway diagrams.


Asunto(s)
Escherichia coli/metabolismo , Metabolómica/métodos , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Redes y Vías Metabólicas , Modelos Biológicos , Programas Informáticos
15.
Biochem Biophys Res Commun ; 479(4): 622-627, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27697527

RESUMEN

The Andes-endemic Barnadesioideae lineage is the oldest surviving and phylogenetically basal subfamily of the Asteraceae (Compositae), a prolific group of flowering plants with world-wide distribution (∼24,000 species) marked by a rich diversity of sesquiterpene lactones (STLs). Intriguingly, there is no evidence that members of the Barnadesioideae produce STLs, specialized metabolites thought to have contributed to the adaptive success of the Asteraceae family outside South America. The biosynthesis of STLs requires the intimate expression and functional integration of germacrene A synthase (GAS) and germacrene A oxidase (GAO) to sequentially cyclize and oxidize farnesyl diphosphate into the advanced intermediate germacrene A acid leading to diverse STLs. Our previous discovery of GAO activity conserved across all major subfamilies of Asteraceae, including the phylogenetically basal lineage of Barnadesioideae, prompted further investigation of the presence of the gateway GAS in Barnadesioideae. Herein we isolated two terpene synthases (BsGAS1/BsGAS2) from the basal Barnadesia spinosa (Barnadesioideae) that displayed robust GAS activity when reconstituted in yeast and characterized in vitro. Despite the apparent lack of STLs in the Barnadesioideae, this work unambiguously confirms the presence of GAS in the basal genera of the Asteraceae. Phylogenetic analysis reveals that the two BsGASs fall into two distinct clades of the Asteraceae's GASs, and BsGAS1 clade is only retained in the evolutionary closer Cichorioideae subfamily, implicating BsGAS2 is likely the ancestral base of most GASs found in the lineages outside the Barnadesioideae. Taken together, these results show the enzymatic capacities of GAS and GAO emerged prior to the subsequent radiation of STL-producing Asteraceae subfamilies.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Asteraceae/enzimología , Proteínas de Plantas/metabolismo , Sesquiterpenos de Germacrano/biosíntesis , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/clasificación , Transferasas Alquil y Aril/genética , Asteraceae/clasificación , Asteraceae/genética , Biodiversidad , Clonación Molecular , Cinética , Lactonas/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Sesquiterpenos de Germacrano/química
16.
Proc Natl Acad Sci U S A ; 113(30): E4407-14, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27412861

RESUMEN

Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply.


Asunto(s)
Aminoácidos/genética , Transferasas Intramoleculares/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Avena/enzimología , Avena/genética , Avena/metabolismo , Secuencia Conservada/genética , Ciclización , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Triterpenos/química
17.
J Antibiot (Tokyo) ; 69(7): 524-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27328867

RESUMEN

The plant terpene synthase (TPS) family is responsible for the biosynthesis of a variety of terpenoid natural products possessing diverse biological functions. TPSs catalyze the ionization and, most commonly, rearrangement and cyclization of prenyl diphosphate substrates, forming linear and cyclic hydrocarbons. Moreover, a single TPS often produces several minor products in addition to a dominant product. We characterized the catalytic profiles of Hyoscyamus muticus premnaspirodiene synthase (HPS) and compared it with the profile of a closely related TPS, Nicotiana tabacum 5-epi-aristolochene synthase (TEAS). The profiles of two previously studied HPS and TEAS mutants, each containing nine interconverting mutations, dubbed HPS-M9 and TEAS-M9, were also characterized. All four TPSs were compared under varying temperature and pH conditions. In addition, we solved the X-ray crystal structures of TEAS and a TEAS quadruple mutant complexed with substrate and products to gain insight into the enzymatic features modulating product formation. These informative structures, along with product profiles, provide new insight into plant TPS catalytic promiscuity.


Asunto(s)
Hyoscyamus/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Dominio Catalítico , Estabilidad de Enzimas/genética , Concentración de Iones de Hidrógeno , Hyoscyamus/genética , Mutación , Proteínas de Plantas/genética , Temperatura
19.
Nat Commun ; 6: 6143, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25644758

RESUMEN

The emergence of terpene cyclization was critical to the evolutionary expansion of chemical diversity yet remains unexplored. Here we report the first discovery of an epistatic network of residues that controls the onset of terpene cyclization in Artemisia annua. We begin with amorpha-4,11-diene synthase (ADS) and (E)-ß-farnesene synthase (BFS), a pair of terpene synthases that produce cyclic or linear terpenes, respectively. A library of ~27,000 enzymes is generated by breeding combinations of natural amino-acid substitutions from the cyclic into the linear producer. We discover one dominant mutation is sufficient to activate cyclization, and together with two additional residues comprise a network of strongly epistatic interactions that activate, suppress or reactivate cyclization. Remarkably, this epistatic network of equivalent residues also controls cyclization in a BFS homologue from Citrus junos. Fitness landscape analysis of mutational trajectories provides quantitative insights into a major epoch in specialized metabolism.


Asunto(s)
Artemisia annua/metabolismo , Terpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Artemisia annua/enzimología , Ciclización , Pirofosfatasas/metabolismo
20.
PLoS One ; 9(9): e107462, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25203155

RESUMEN

Plants protect themselves against a variety of invading pathogenic organisms via sophisticated defence mechanisms. These responses include deployment of specialized antimicrobial compounds, such as phytoalexins, that rapidly accumulate at pathogen infection sites. However, the extent to which these compounds contribute to species-level resistance and their spectrum of action remain poorly understood. Capsidiol, a defense related phytoalexin, is produced by several solanaceous plants including pepper and tobacco during microbial attack. Interestingly, capsidiol differentially affects growth and germination of the oomycete pathogens Phytophthora infestans and Phytophthora capsici, although the underlying molecular mechanisms remain unknown. In this study we revisited the differential effect of capsidiol on P. infestans and P. capsici, using highly pure capsidiol preparations obtained from yeast engineered to express the capsidiol biosynthetic pathway. Taking advantage of transgenic Phytophthora strains expressing fluorescent markers, we developed a fluorescence-based method to determine the differential effect of capsidiol on Phytophtora growth. Using these assays, we confirm major differences in capsidiol sensitivity between P. infestans and P. capsici and demonstrate that capsidiol alters the growth behaviour of both Phytophthora species. Finally, we report intraspecific variation within P. infestans isolates towards capsidiol tolerance pointing to an arms race between the plant and the pathogens in deployment of defence related phytoalexins.


Asunto(s)
Especificidad del Huésped/fisiología , Phytophthora infestans/fisiología , Phytophthora/fisiología , Sesquiterpenos/metabolismo , Fluorescencia , Enfermedades de las Plantas/parasitología , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...