Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
J Nat Prod ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990199

RESUMEN

Fungal secondary metabolite (SM) biosynthetic gene clusters (BGCs) containing dimethylallyltryptophan synthases (DMATSs) produce structurally diverse prenylated indole alkaloids with wide-ranging activities that have vast potential as human therapeutics. To discover new natural products produced by DMATSs, we mined the Department of Energy Joint Genome Institute's MycoCosm database for DMATS-containing BGCs. We found a DMATS BGC in Aspergillus homomorphus CBS 101889, which also contains a nonribosomal peptide synthetase (NRPS). This BGC appeared to have a previously unreported combination of genes, which suggested the cluster might make novel SMs. We refactored this BGC with highly inducible promoters into the model fungus Aspergillus nidulans. The expression of this refactored BGC in A. nidulans resulted in the production of eight tryptophan-containing diketopiperazines, six of which are new to science. We have named them homomorphins A-F (2, 4-8). Perhaps even more intriguingly, to our knowledge, this is the first discovery of C4-prenylated tryptophan-containing diketopiperazines and their derivatives. In addition, the NRPS from this BGC is the first described that has the ability to promiscuously combine tryptophan with either of two different amino acids, in this case, l-valine or l-allo-isoleucine.

2.
Nat Rev Immunol ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467802

RESUMEN

Definitive haematopoiesis is the process by which haematopoietic stem cells, located in the bone marrow, generate all haematopoietic cell lineages in healthy adults. Although highly regulated to maintain a stable output of blood cells in health, the haematopoietic system is capable of extensive remodelling in response to external challenges, prioritizing the production of certain cell types at the expense of others. In this Review, we consider how acute insults, such as infections and cytotoxic drug-induced myeloablation, cause molecular, cellular and metabolic changes in haematopoietic stem and progenitor cells at multiple levels of the haematopoietic hierarchy to drive accelerated production of the mature myeloid cells needed to resolve the initiating insult. Moreover, we discuss how dysregulation or subversion of these emergency myelopoiesis mechanisms contributes to the progression of chronic inflammatory diseases and cancer.

3.
J Fungi (Basel) ; 10(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38392776

RESUMEN

Wild-type Aspergillus nidulans asexual spores (conidia) are green due to a pigment that protects the spores against ultraviolet light. The pigment is produced by a biosynthetic pathway, the genes of which are dispersed in the genome. The backbone molecule of the pigment is a polyketide synthesized by a polyketide synthase encoded by the wA gene. If wA is not functional, the conidia are white. The polyketide is modified by a laccase encoded by the yA gene and inactivation of yA in an otherwise wild-type background results in yellow spores. Additional spore color mutations have been isolated and mapped to a locus genetically, but the genes that correspond to these loci have not been determined. Spore color markers have been useful historically, and they remain valuable in the molecular genetics era. One can determine if a transforming fragment has been successfully integrated at the wA or yA locus by simply looking at the color of transformant conidia. The genes of the potentially useful color loci chaA (chartreuse conidia) and fwA (fawn conidia) have not been identified previously. We chose a set of candidate genes for each locus by comparing the assembled genome with the genetic map. By systematically deleting these candidate genes, we identified a cytochrome P450 gene (AN10028) corresponding to chaA. Deletions of this gene result in chartreuse conidia and chartreuse mutations can be complemented in trans by a functional copy of this gene. With fwA, we found that the existing fawn mutation, fwA1, is a deletion of 2241 base pairs that inactivates three genes. By deleting each of these genes, we determined that fwA is AN1088, an EthD domain protein. Deletion of AN1088 results in fawn conidia as expected. Neither deletion of chaA nor fwA restricts growth and both should be valuable target loci for transformations. Combinations of deletions have allowed us to investigate the epistasis relationships of wA, yA, chaA and fwA.

4.
Nature ; 625(7993): 166-174, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38057662

RESUMEN

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Asunto(s)
Médula Ósea , Carcinogénesis , Interleucina-4 , Mielopoyesis , Transducción de Señal , Animales , Humanos , Ratones , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/metabolismo , Médula Ósea/efectos de los fármacos , Médula Ósea/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Monocitos/efectos de los fármacos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Recurrencia , Transducción de Señal/efectos de los fármacos
5.
Chem Sci ; 14(40): 11022-11032, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37860661

RESUMEN

Aspergillus fumigatus is a serious human pathogen causing life-threatening Aspergillosis in immunocompromised patients. Secondary metabolites (SMs) play an important role in pathogenesis, but the products of many SM biosynthetic gene clusters (BGCs) remain unknown. In this study, we have developed a heterologous expression platform in Aspergillus nidulans, using a newly created genetic dereplication strain, to express a previously unknown BGC from A. fumigatus and determine its products. The BGC produces sartorypyrones, and we have named it the spy BGC. Analysis of targeted gene deletions by HRESIMS, NMR, and microcrystal electron diffraction (MicroED) enabled us to identify 12 products from the spy BGC. Seven of the compounds have not been isolated previously. We also individually expressed the polyketide synthase (PKS) gene spyA and demonstrated that it produces the polyketide triacetic acid lactone (TAL), a potentially important biorenewable platform chemical. Our data have allowed us to propose a biosynthetic pathway for sartorypyrones and related natural products. This work highlights the potential of using the A. nidulans heterologous expression platform to uncover cryptic BGCs from A. fumigatus and other species, despite the complexity of their secondary metabolomes.

6.
Genetics ; 225(4)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37724751

RESUMEN

Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.


Asunto(s)
Cromatina , Segregación Cromosómica , Cromatina/genética , Dineínas/metabolismo , Sumoilación , Mitosis/genética , Aspergillus/metabolismo
7.
Pediatr Cardiol ; 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566242

RESUMEN

We present the clinical course and echocardiographic and genetic findings of two fetuses with an unusual vascular ring, created by a left aortic arch with a right arterial duct and an aberrant right subclavian artery. One fetus was diagnosed with 22q11.2 microdeletion and the other became symptomatic in infancy. It is important to consider the position of the arterial ductal ligament in patients who present with tracheoesophageal compressive symptoms in the presence of a left aortic arch. These cases also highlight that a vascular ring formed from a left arch may have similar associations to a vascular ring formed by a right aortic arch.

8.
bioRxiv ; 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37131833

RESUMEN

Functions of protein SUMOylation remain incompletely understood in different cell types. The budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, but dynein-pathway components were not identified as SUMO-targets in the filamentous fungus Aspergillus nidulans. Via A. nidulans forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO-activation enzyme UbaB. Colonies of the ubaBQ247*, ΔubaB and ΔsumO mutants looked similar and less healthy than the wild-type colony. In these mutants, about 10% of nuclei are connected by abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. Nuclei connected by chromatin bridges are mostly in interphase, suggesting that these bridges do not prevent cell-cycle progression. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO-targets being nuclear proteins, for example, topoisomerase II whose SUMOylation defect gives rise to chromatin bridges in mammalian cells. Unlike in mammalian cells, however, loss of SUMOylation in A. nidulans does not apparently affect the metaphase-to-anaphase transition, further highlighting differences in the requirements of SUMOylation in different cell types. Finally, loss of UbaB or SumO does not affect dynein- and LIS1-mediated early-endosome transport, indicating that SUMOylation is unnecessary for dynein or LIS1 function in A. nidulans.

9.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37115584

RESUMEN

Hematopoietic stem cells (HSC) and downstream lineage-biased multipotent progenitors (MPP) tailor blood production and control myelopoiesis on demand. Recent lineage tracing analyses revealed MPPs to be major functional contributors to steady-state hematopoiesis. However, we still lack a precise resolution of myeloid differentiation trajectories and cellular heterogeneity in the MPP compartment. Here, we found that myeloid-biased MPP3 are functionally and molecularly heterogeneous, with a distinct subset of myeloid-primed secretory cells with high endoplasmic reticulum (ER) volume and FcγR expression. We show that FcγR+/ERhigh MPP3 are a transitional population serving as a reservoir for rapid production of granulocyte/macrophage progenitors (GMP), which directly amplify myelopoiesis through inflammation-triggered secretion of cytokines in the local bone marrow (BM) microenvironment. Our results identify a novel regulatory function for a secretory MPP3 subset that controls myeloid differentiation through lineage-priming and cytokine production and acts as a self-reinforcing amplification compartment in inflammatory stress and disease conditions.


Asunto(s)
Hematopoyesis , Receptores de IgG , Diferenciación Celular , Linaje de la Célula , Células Mieloides , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo
10.
J Am Chem Soc ; 145(9): 5222-5230, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36779837

RESUMEN

Polystyrene (PS) is one of the most used yet infrequently recycled plastics. Although manufactured on the scale of 300 million tons per year globally, current approaches toward PS degradation are energy- and carbon-inefficient, slow, and/or limited in the value that they reclaim. We recently reported a scalable process to degrade post-consumer polyethylene-containing waste streams into carboxylic diacids. Engineered fungal strains then upgrade these diacids biosynthetically to synthesize pharmacologically active secondary metabolites. Herein, we apply a similar reaction to rapidly convert PS to benzoic acid in high yield. Engineered strains of the filamentous fungus Aspergillus nidulans then biosynthetically upgrade PS-derived crude benzoic acid to the structurally diverse secondary metabolites ergothioneine, pleuromutilin, and mutilin. Further, we expand the catalog of plastic-derived products to include spores of the industrially relevant biocontrol agent Aspergillus flavus Af36 from crude PS-derived benzoic acid.


Asunto(s)
Productos Biológicos , Poliestirenos , Poliestirenos/metabolismo , Productos Biológicos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Aspergillus flavus/metabolismo
11.
Nat Cell Biol ; 25(1): 30-41, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36650381

RESUMEN

Haematopoietic ageing is marked by a loss of regenerative capacity and skewed differentiation from haematopoietic stem cells (HSCs), leading to impaired blood production. Signals from the bone marrow niche tailor blood production, but the contribution of the old niche to haematopoietic ageing remains unclear. Here we characterize the inflammatory milieu that drives both niche and haematopoietic remodelling. We find decreased numbers and functionality of osteoprogenitors at the endosteum and expansion of central marrow LepR+ mesenchymal stromal cells associated with deterioration of the sinusoidal vasculature. Together, they create a degraded and inflamed old bone marrow niche. Niche inflammation in turn drives the chronic activation of emergency myelopoiesis pathways in old HSCs and multipotent progenitors, which promotes myeloid differentiation and hinders haematopoietic regeneration. Moreover, we show how production of interleukin-1ß (IL-1ß) by the damaged endosteum acts in trans to drive the proinflammatory nature of the central marrow, with damaging consequences for the old blood system. Notably, niche deterioration, HSC dysfunction and defective regeneration can all be ameliorated by blocking IL-1 signalling. Our results demonstrate that targeting IL-1 as a key mediator of niche inflammation is a tractable strategy to improve blood production during ageing.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Médula Ósea/metabolismo , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Nicho de Células Madre , Interleucina-1/metabolismo
12.
Angew Chem Int Ed Engl ; 62(4): e202214609, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36417558

RESUMEN

Waste plastics represent major environmental and economic burdens due to their ubiquity, slow breakdown rates, and inadequacy of current recycling routes. Polyethylenes are particularly problematic, because they lack robust recycling approaches despite being the most abundant plastics in use today. We report a novel chemical and biological approach for the rapid conversion of polyethylenes into structurally complex and pharmacologically active compounds. We present conditions for aerobic, catalytic digestion of polyethylenes collected from post-consumer and oceanic waste streams, creating carboxylic diacids that can then be used as a carbon source by the fungus Aspergillus nidulans. As a proof of principle, we have engineered strains of A. nidulans to synthesize the fungal secondary metabolites asperbenzaldehyde, citreoviridin, and mutilin when grown on these digestion products. This hybrid approach considerably expands the range of products to which polyethylenes can be upcycled.


Asunto(s)
Aspergillus nidulans , Polietilenos , Polietilenos/química , Plásticos/química , Catálisis , Aspergillus nidulans/metabolismo
14.
Nat Rev Cancer ; 20(7): 365-382, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32415283

RESUMEN

Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.


Asunto(s)
Carcinogénesis/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/fisiología , Leucemia Mieloide Aguda/fisiopatología , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Interacción Gen-Ambiente , Inestabilidad Genómica/efectos de los fármacos , Inestabilidad Genómica/fisiología , Hematopoyesis/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutación/efectos de los fármacos , Mutación/genética , Mutación/fisiología , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/fisiología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-31988205

RESUMEN

The hematopoietic system is highly organized to maintain its functional integrity and to meet lifelong organismal demands. Hematopoietic stem cells (HSCs) must balance self-renewal with differentiation and the regeneration of the blood system. It is a complex balancing act between these competing HSC functions. Although highly quiescent at steady state, HSCs become activated in response to inflammatory cytokines and regenerative challenges. This activation phase leads to many intrinsic stresses such as replicative, metabolic, and oxidative stress, which can cause functional decline, impaired self-renewal, and exhaustion of HSCs. To cope with these insults, HSCs use both built-in and emergency-triggered stress-response mechanisms to maintain homeostasis and to defend against disease development. In this review, we discuss how the hematopoietic system operates in steady state and stress conditions, what strategies are used to maintain functional integrity, and how deregulation in the balance between self-renewal and regeneration can drive malignant transformation.


Asunto(s)
Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Regeneración/fisiología , Animales , Antineoplásicos Inmunológicos , Diferenciación Celular , Citometría de Flujo/métodos , Factores de Crecimiento de Célula Hematopoyética/sangre , Células Madre Hematopoyéticas/citología , Homeostasis , Humanos , Ratones
16.
ACS Chem Biol ; 14(7): 1643-1651, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31265232

RESUMEN

Fungal secondary metabolites (SMs) include medically valuable compounds as well as compounds that are toxic, carcinogenic, and/or contributors to fungal pathogenesis. It is consequently important to understand the regulation of fungal secondary metabolism. McrA is a recently discovered transcription factor that negatively regulates fungal secondary metabolism. Deletion of mcrA (mcrAΔ), the gene encoding McrA, results in upregulation of many SMs and alters the expression of more than 1000 genes. One gene strongly upregulated by the deletion of mcrA is llmG, a putative methyl transferase related to LaeA, a major regulator of secondary metabolism. We artificially upregulated llmG by replacing its promoter with strong constitutive promoters in strains carrying either wild-type mcrA or mcrAΔ. Upregulation of llmG on various media resulted in increased production of the important toxin sterigmatocystin and compounds from at least six major SM pathways. llmG is, thus, a master SM regulator. mcrAΔ generally resulted in greater upregulation of SMs than upregulation of llmG, indicating that the full effects of mcrA on secondary metabolism involve genes in addition to llmG. However, the combination of mcrAΔ and upregulation of llmG generally resulted in greater compound production than mcrAΔ alone (in one case more than 460 times greater than the control). This result indicates that deletion of mcrA and/or upregulation of llmG can likely be combined with other strategies for eliciting SM production to greater levels than can be obtained with any single strategy.


Asunto(s)
Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Metiltransferasas/genética , Aspergilosis/microbiología , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Metiltransferasas/metabolismo , Metabolismo Secundario , Esterigmatocistina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
17.
Fungal Genet Biol ; 127: 50-59, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30849444

RESUMEN

SUMOylation, covalent attachment of the small ubiquitin-like modifier protein SUMO to proteins, regulates protein interactions and activity and plays a crucial role in the regulation of many key cellular processes. Understanding the roles of SUMO in these processes ultimately requires identification of the proteins that are SUMOylated in the organism under study. The filamentous fungus Aspergillus nidulans serves as an excellent model for many aspects of fungal biology, and it would be of great value to determine the proteins that are SUMOylated in this organism (i.e. its SUMOylome). We have developed a new and effective approach for identifying SUMOylated proteins in this organism in which we lock proteins in their SUMOylated state, affinity purify SUMOylated proteins using the high affinity S-tag, and identify them using sensitive Orbitrap mass spectroscopy. This approach allows us to distinguish proteins that are SUMOylated from proteins that are binding partners of SUMOylated proteins or are bound non-covalently to SUMO. This approach has allowed us to identify 149 proteins that are SUMOylated in A. nidulans. Of these, 67 are predicted to be involved in transcription and particularly in the regulation of transcription, 21 are predicted to be involved in RNA processing and 16 are predicted to function in DNA replication or repair.


Asunto(s)
Aspergillus nidulans/química , Aspergillus nidulans/genética , Proteínas Fúngicas/química , Sumoilación , Proteínas Fúngicas/genética , Espectrometría de Masas , Procesamiento Proteico-Postraduccional , Proteómica , Transcripción Genética
18.
PLoS Genet ; 15(3): e1008053, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30883543

RESUMEN

Eukaryotic striatin forms striatin-interacting phosphatase and kinase (STRIPAK) complexes that control many cellular processes including development, cellular transport, signal transduction, stem cell differentiation and cardiac functions. However, detailed knowledge of complex assembly and its roles in stress responses are currently poorly understood. Here, we discovered six striatin (StrA) interacting proteins (Sips), which form a heptameric complex in the filamentous fungus Aspergillus nidulans. The complex consists of the striatin scaffold StrA, the Mob3-type kinase coactivator SipA, the SIKE-like protein SipB, the STRIP1/2 homolog SipC, the SLMAP-related protein SipD and the catalytic and regulatory phosphatase 2A subunits SipE (PpgA), and SipF, respectively. Single and double deletions of the complex components result in loss of multicellular light-dependent fungal development, secondary metabolite production (e.g. mycotoxin Sterigmatocystin) and reduced stress responses. sipA (Mob3) deletion is epistatic to strA deletion by supressing all the defects caused by the lack of striatin. The STRIPAK complex, which is established during vegetative growth and maintained during the early hours of light and dark development, is mainly formed on the nuclear envelope in the presence of the scaffold StrA. The loss of the scaffold revealed three STRIPAK subcomplexes: (I) SipA only interacts with StrA, (II) SipB-SipD is found as a heterodimer, (III) SipC, SipE and SipF exist as a heterotrimeric complex. The STRIPAK complex is required for proper expression of the heterotrimeric VeA-VelB-LaeA complex which coordinates fungal development and secondary metabolism. Furthermore, the STRIPAK complex modulates two important MAPK pathways by promoting phosphorylation of MpkB and restricting nuclear shuttling of MpkC in the absence of stress conditions. SipB in A. nidulans is similar to human suppressor of IKK-ε(SIKE) protein which supresses antiviral responses in mammals, while velvet family proteins show strong similarity to mammalian proinflammatory NF-KB proteins. The presence of these proteins in A. nidulans further strengthens the hypothesis that mammals and fungi use similar proteins for their immune response and secondary metabolite production, respectively.


Asunto(s)
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/crecimiento & desarrollo , Depuradores de Radicales Libres/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Eliminación de Gen , Genes Fúngicos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luz , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Membrana Nuclear/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Estrés Fisiológico
19.
ACS Chem Biol ; 13(11): 3193-3205, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30339758

RESUMEN

Fungi are a major source of valuable bioactive secondary metabolites (SMs). These compounds are synthesized by enzymes encoded by genes that are clustered in the genome. The vast majority of SM biosynthetic gene clusters are not expressed under normal growth conditions, and their products are unknown. Developing methods for activation of these silent gene clusters offers the potential for discovering many valuable new fungal SMs. While a number of useful approaches have been developed, they each have limitations, and additional tools are needed. One approach, upregulation of SM gene cluster-specific transcription factors that are associated with many SM gene clusters, has worked extremely well in some cases, but it has failed more often than it has succeeded. Taking advantage of transcription factor domain modularity, we developed a new approach. We fused the DNA-binding domain of a transcription factor associated with a silent SM gene cluster with the activation domain of a robust SM transcription factor, AfoA. Expression of this hybrid transcription factor activated transcription of the genes in the target cluster and production of the antibiotic (+)-asperlin. Deletion of cluster genes confirmed that the cluster is responsible for (+)-asperlin production, and we designate it the aln cluster. Separately, coinduction of expression of two aln cluster genes revealed the pathway intermediate (2 Z,4 Z,6 E)-octa-2,4,6-trienoic acid, a compound with photoprotectant properties. Our findings demonstrate the potential of our novel synthetic hybrid transcription factor strategy to discover the products of other silent fungal SM gene clusters.


Asunto(s)
Compuestos Epoxi/metabolismo , Proteínas Fúngicas/genética , Familia de Multigenes , Pironas/metabolismo , Proteínas Recombinantes de Fusión/genética , Factores de Transcripción/genética , Activación Transcripcional , Aspergillus nidulans/genética , Proteínas Fúngicas/química , Genes Fúngicos , Dominios Proteicos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/química , Factores de Transcripción/química
20.
Fungal Genet Biol ; 111: 1-6, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29309843

RESUMEN

Technical advances in Aspergillus nidulans enable relatively easy deletion of genomic sequences, insertion of sequences into the genome and alteration of genomic sequences. To extend the power of this system we wished to create strains with several selectable markers in a common genetic background to facilitate multiple, sequential transformations. We have developed an approach, using the recycling of the pyrG selectable marker, that has allowed us to create new deletions of the biA, pabaA, choA, and lysB genes. We have deleted these genes in a strain that carries the commonly used pyrG89, riboB2, and pyroA4 mutations as well as a deletion of the sterigmatocystin gene cluster and a deletion of the nkuA gene, which greatly reduces heterologous integration of transforming sequences. The new deletions are fully, easily and cheaply supplementable. We have created a strain that carries seven selectable markers as well as strains that carry subsets of these markers. We have identified the homologous genes from Aspergillus terreus, cloned them and used them as selectable markers to transform our new strains. The newly created strains transform well and the new deletion alleles appear to be complemented fully by the A. terreus genes. In addition, we have used deep sequencing data to determine the sequence alterations of the venerable and frequently used pyrG89, riboB2 and pyroA4 alleles and we have reannotated the choA gene.


Asunto(s)
Aspergillus nidulans/genética , Genes Fúngicos , Marcadores Genéticos , Clonación Molecular , Eliminación de Gen , Marcación de Gen , Prueba de Complementación Genética , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...