Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 22(1): 766, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702162

RESUMEN

BACKGROUND: The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. RESULTS: C. paspali isolates had compact genomes and secretome which accounted for 4.6-4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. CONCLUSIONS: Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.


Asunto(s)
Claviceps , Micotoxinas , Paspalum , Animales , Bovinos , Claviceps/genética , Virulencia
2.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32675184

RESUMEN

Here, we report a new draft genome sequence of an isolate of the ascomycete Claviceps paspali that is responsible for ergot disease in grasses of the Paspalum genus. This new draft genome sequence will provide useful data for evaluating intraspecies and interspecies genome variation in C. paspali and other Claviceps genus members.

3.
Mycologia ; 112(2): 230-243, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31910144

RESUMEN

Claviceps species affecting Paspalum spp. are a serious problem, as they infect forage grasses such as Paspalum dilatatum and P. plicatulum, producing the ergot disease. The ascomycete C. paspali is known to be the pathogen responsible for this disease in both grasses. This fungus produces alkaloids, including ergot alkaloids and indole-diterpenes, that have potent neurotropic activities in mammals. A total of 32 isolates from Uruguay were obtained from infected P. dilatatum and P. plicatulum. Isolates were phylogenetically identified using partial sequences of the genes coding for the second largest subunit of RNA polymerase subunit II (RPB2), translation elongation factor 1-α (TEF1), ß-tubulin (TUB2), and the nuc rDNA 28S subunit (28S). Isolates were also genotyped by randomly amplified polymorphic DNA (RAPD) and presence of genes within the ergot alkaloid (EAS) and indole-diterpene (IDT) biosynthetic gene clusters. This study represents the first genetic characterization of several isolates of C. paspali. The results from this study provide insight into the genetic and genotypic diversity of Claviceps paspali present in P. dilatatum and suggest that isolates from P. plicatulum could be considered an ecological subspecies or specialized variant of C. paspali. Some of these isolates show hypothetical alkaloid genotypes never reported before.


Asunto(s)
Claviceps/genética , Alcaloides de Claviceps/genética , Alcaloides/genética , Claviceps/clasificación , Claviceps/metabolismo , Diterpenos , Genotipo , Técnicas de Genotipaje , Especificidad del Huésped , Indoles , Familia de Multigenes , Paspalum/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Técnica del ADN Polimorfo Amplificado Aleatorio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...