Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(8): 5531-5538, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38660613

RESUMEN

A method for modeling high oxidation state catalysts is used on precatalysts with unsymmetrical and symmetrical bidentate ligands to get a more detailed understanding of how changes to ancillary ligands affect the hydroamination of alkynes catalyzed by titanium. To model the electronic donor ability, the ligand donor parameter (LDP) was used, and to model the steric effects, percent buried volume (% Vbur) was employed. For the modeling study, 7 previously unpublished unsymmetrical Ti(XX')(NMe2)2 precatalysts were prepared, where XX' is a chelating ligand with pyrrolyl/indolyl linkages. The rates of these unsymmetrical and 10 previously reported symmetrical precatalysts were used with the model kobs = a + b(LDP)1 + c(LDP)2 + d(% Vbur)1 + e(% Vbur)2, where a-e were found through least-squares refinement. The model suggests that (1) the two attachment points of the bidentate ligand XX' are in different environments on the metal (e.g., axial and equatorial in a trigonal bipyramidal or square pyramidal structure), (2) the position of the unsymmetrical ligand on the metal is determined by the electronics of the ligand rather than the sterics, and (3) that one side of the chelating ligand's electronics strongly influences the rate, while the other side's sterics more strongly influences the rate. From these studies, we were able to generate catalysts fitting to this model with rate constants larger than the fastest symmetrical catalyst tested.

2.
Chem Sci ; 14(16): 4257-4264, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37123180

RESUMEN

A room temperature stable complex formulated as Y(NHAr*)2 has been prepared, where Ar* = 2,6-(2,4,6-(iPr)3C6H2)C6H3, by KC8 reduction of ClY(NHAr*)2. Based on EPR evidence, Y(NHAr*)2 is an example of a d1 Y(ii) complex with significant delocalization of the unpaired electron density from the metal to the ligand. The isolation of molecular divalent metal complexes is challenging for rare earth elements such as yttrium. In fact, stabilization of the divalent state requires judicious ligand design that allows the metal center to be coordinatively saturated. Divalent rare earth elements tend to be reactive towards various substrates. Interestingly, Y(NHAr*)2 reacts as a radical donor towards t BuNC to generate an unusual yttrium isocyanide complex, CNY(NHAr*)2, based on spectroscopic evidence and single-crystal X-ray diffraction data.

3.
RSC Med Chem ; 14(1): 74-84, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760735

RESUMEN

NRF2 is a transcription factor that controls the cellular response to various stressors, such as reactive oxygen and nitrogen species. As such, it plays a key role in the suppression of carcinogenesis, but constitutive NRF2 expression in cancer cells leads to resistance to chemotherapeutics and promotes metastasis. As a result, inhibition of the NRF2 pathway is a target for new drugs, especially for use in conjunction with established chemotherapeutic agents like carboplatin and 5-fluorouracil. A new class of NRF2 inhibitors has been discovered with substituted nicotinonitriles, such as MSU38225. In this work, the effects on NRF2 inhibition with structural changes were explored. Through these studies, we identified a few compounds with as good or better activity than the initial hit but with greatly improved solubility. The syntheses involved a variety of metal-catalyzed reactions, including titanium multicomponent coupling reactions and various Pd and Cu coupling reactions. In addition to inhibiting NRF2 activity, these new compounds inhibited the proliferation and migration of lung cancer cells in which the NRF2 pathway is constitutively activated.

4.
Dalton Trans ; 52(3): 721-730, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36562335

RESUMEN

A rare example of a structurally characterized metal quinoline complex was prepared using a non-covalent quinoline-based proteasome inhibitor (Quin1), and a related complex bearing an inactive quinoline ligand (Quin2) was also synthesized. The quinolines are prepared by a one-pot procedure involving titanium-catalyzed alkyne iminoamination and are bound to ruthenium by reaction with CpRu(NCMe)3+ PF6- in CH2Cl2. The arene of the quinoline is η6-bonded to the ruthenium metal center. The kinetics of quinoline displacement were investigated, and reactivity with deuterated solvents follows the order acetonitrile > DMSO > water. Quinolines with more methyl groups on the arene are more kinetically stable, and RuCp(Quin1)+ PF6- (1), which has two methyl groups on the arene, is stable for days in DMSO. In contrast, a very similar complex (2) made with Quin2 having no methyl groups on the arene was readily displaced by DMSO. Both 1 and 2 are stable in 9 : 1 water/DMSO for days with no measurable displacement of the quinoline. The cytotoxicity of the quinolines, their CpRu+-complexes, and CpRu(DMSO)3+ PF6- was investigated towards two multiple myeloma cell lines: MC/CAR and RPMI 8226. To determine whether the activity of the complexes was related to the nature of the quinoline ligands, two structurally similar quinoline ligands with vastly different biological properties were investigated. Quin1 is a cytotoxic proteasome inhibitor, whereas Quin2 is not a proteasome inhibitor and showed no discernable cytotoxicity. The ruthenium complexes showed poor cellular proteasome inhibition. However, both 1 and 2 showed good cytotoxicity towards RPMI 8226 and MC/CAR, with 1 being slightly more cytotoxic. For example, 1 has a CC50 = 2 µM in RPMI 8226, and 2 has a CC50 = 5 µM for the same cell line. In contrast, CpRu(DMSO)3+ PF6- was quite active towards MC/CAR with CC50 = 2.8 µM but showed no discernible cytotoxicity toward RPMI 8226. The mechanism of action responsible for the observed cytotoxicity is not known, but the new Ru(Cp)(Quin)+ PF6- complexes do not cross-link DNA as found for platinum-based drugs. It is concluded that the Ru(Cp)(Quin)+ PF6- complexes remain intact in the cellular assays and constitute a new class of cytotoxic metal complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Quinolinas , Rutenio , Inhibidores de Proteasoma/farmacología , Rutenio/farmacología , Rutenio/química , Dimetilsulfóxido , Antineoplásicos/química , Complejos de Coordinación/química , Quinolinas/farmacología , Ligandos
5.
Org Biomol Chem ; 20(33): 6630-6636, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35924784

RESUMEN

Treatment of isoxazoles with enamines leads to an inverse electron-demand hetero-Diels-Alder reaction that produces substituted pyridines in the presence of TiCl4(THF)2 and titanium powder. The reaction is highly regioselective with only a single isomer of the product observed by GC/MS and tolerant of many common functional groups. The transformation was examined computationally, and it was found that TiCl4 (or a similar Lewis acid) likely acts to catalyze the reaction. After the initial [4 + 2]-cycloaddition, the oxaza-[2.2.1]-bicycle produced likely ring opens before amine loss to give an N-oxide. The pyridine is then obtained after reduction with TiCl4 and titanium powder.


Asunto(s)
Isoxazoles , Titanio , Reacción de Cicloadición , Polvos , Piridinas , Estereoisomerismo
6.
Mol Cancer Ther ; 20(9): 1692-1701, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34158350

RESUMEN

The nuclear factor erythroid-2-related factor 2 (Nrf2)-Keap1-ARE pathway, a master regulator of oxidative stress, has emerged as a promising target for cancer therapy. Mutations in NFE2L2, KEAP1, and related genes have been found in many human cancers, especially lung cancer. These mutations lead to constitutive activation of the Nrf2 pathway, which promotes proliferation of cancer cells and their resistance to chemotherapies. Small molecules that inhibit the Nrf2 pathway are needed to arrest tumor growth and overcome chemoresistance in Nrf2-addicted cancers. Here, we identified a novel small molecule, MSU38225, which can suppress Nrf2 pathway activity. MSU38225 downregulates Nrf2 transcriptional activity and decreases the expression of Nrf2 downstream targets, including NQO1, GCLC, GCLM, AKR1C2, and UGT1A6. MSU38225 strikingly decreases the protein level of Nrf2, which can be blocked by the proteasome inhibitor MG132. Ubiquitination of Nrf2 is enhanced following treatment with MSU38225. By inhibiting production of antioxidants, MSU38225 increases the level of reactive oxygen species (ROS) when cells are stimulated with tert-butyl hydroperoxide (tBHP). MSU38225 also inhibits the growth of human lung cancer cells in both two-dimensional cell culture and soft agar. Cancer cells addicted to Nrf2 are more susceptible to MSU38225 for suppression of cell proliferation. MSU38225 also sensitizes human lung cancer cells to chemotherapies both in vitro and in vivo Our results suggest that MSU38225 is a novel Nrf2 pathway inhibitor that could potentially serve as an adjuvant therapy to enhance the response to chemotherapies in patients with lung cancer.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Animales , Antioxidantes , Apoptosis , Ciclo Celular , Proliferación Celular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno , Bibliotecas de Moléculas Pequeñas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA