Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39199753

RESUMEN

Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.

2.
mBio ; 15(7): e0109224, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38847539

RESUMEN

Herpes B virus (BV) is a zoonotic virus and belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). BV typically establishes asymptomatic infection in its natural hosts, macaque monkeys. However, in humans, BV infection causes serious neurological diseases and death. As such, BV research can only be conducted in a high containment level facility (i.e., biosafety level [BSL] 4), and the mechanisms of BV entry have not been fully elucidated. In this study, we generated a pseudotyped vesicular stomatitis virus (VSV) expressing BV glycoproteins using G-complemented VSV∆G system, which we named VSV/BVpv. We found that four BV glycoproteins (i.e., gB, gD, gH, and gL) were required for the production of a high-titer VSV/BVpv. Moreover, VSV/BVpv cell entry was dependent on the binding of gD to its cellular receptor nectin-1. Pretreatment of Vero cells with endosomal acidification inhibitors did not affect the VSV/BVpv infection. The result indicated that VSV/BVpv entry occurred by direct fusion with the plasma membrane of Vero cells and suggested that the entry pathway was similar to that of native HSV. Furthermore, we developed a VSV/BVpv-based chemiluminescence reduction neutralization test (CRNT), which detected the neutralization antibodies against BV in macaque plasma samples with high sensitivity and specificity. Crucially, the VSV/BVpv generated in this study can be used under BSL-2 condition to study the initial entry process through gD-nectin-1 interaction and the direct fusion of BV with the plasma membrane of Vero cells.IMPORTANCEHerpes B virus (BV) is a highly pathogenic zoonotic virus against humans. BV belongs to the genus Simplexvius, the same genus as human herpes simplex virus (HSV). By contrast to HSV, cell entry mechanisms of BV are not fully understood. The research procedures to manipulate infectious BV should be conducted in biosafety level (BSL)-4 facilities. As pseudotyped viruses provide a safe viral entry model because of their inability to produce infectious progeny virus, we tried to generate a pseudotyped vesicular stomatitis virus bearing BV glycoproteins (VSV/BVpv) by modification of expression constructs of BV glycoproteins, and successfully obtained VSV/BVpv with a high titer. This study has provided novel information for constructing VSV/BVpv and its usefulness to study BV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Internalización del Virus , Animales , Anticuerpos Neutralizantes/inmunología , Chlorocebus aethiops , Células Vero , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Humanos , Pruebas de Neutralización , Vesiculovirus/genética , Vesiculovirus/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Glicoproteínas/genética , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
3.
Front Behav Neurosci ; 18: 1378059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741685

RESUMEN

Transcranial alternating current stimulation (tACS) is a noninvasive method for brain stimulation that artificially modulates oscillatory brain activity in the cortical region directly beneath the electrodes by applying a weak alternating current. Beta (ß) oscillatory activity in the supplementary motor area (SMA) is involved in motor planning and maintenance, whereas gamma (γ) oscillatory activity is involved in the updating of motor plans. However, the effect of applying tACS to the SMA on motor learning has not yet been investigated. This study assessed the effects of applying tACS to the SMA on motor learning. Forty-two right-handed healthy adults (age 20.6 ± 0.5 years, 24 men and 18 women) were included. Motor learning was assessed using a visuomotor tracking task with pinch tension of the right thumb and right forefinger. Each trial lasted 60 s, and the error rates were measured. Conductive rubber electrodes were attached to the SMA and the left shoulder for tACS. Stimulation was applied at an intensity of 1.0 mA and frequencies of 70 and 20 Hz in the γ-tACS and ß-tACS treatment groups, respectively. The sham group was only administered a fade-in/out. The visuomotor tracking task was performed for 10 trials before tACS and 10 trials after tACS. Two trials were conducted on the following day to determine motor skill retention. The average deviation measured during 60 s was considered the error value. Pre-stimulation learning rate was calculated as the change in error rate. Post-stimulation learning rate and retention rate were calculated as the change in error rate after stimulation and on the day after stimulation, respectively. In both the stimulation groups, differences in pre-stimulation learning, post-stimulation learning, and retention rates were not significant. However, in the γ-tACS group, baseline performance and pre-stimulation learning rate were positively correlated with post-stimulation learning rate. Therefore, applying γ-tACS to the SMA can increase post-stimulation learning rate in participants exhibiting low baseline performance and high pre-stimulation learning rate. Our findings suggest that motor learning can be effectively enhanced by applying γ-tACS to the SMA based on an individual's motor and learning abilities.

4.
Microbiol Spectr ; 12(1): e0309123, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38095468

RESUMEN

IMPORTANCE: Zoonotic infection of humans with herpes B virus (BV) causes severe neurological diseases. Acyclovir (ACV) and ganciclovir (GCV), most frequently used as anti-herpes drugs, are recommended for prophylaxis and therapy in human BV infection. In this study, we examined the property of BV thymidine kinase (TK) against anti-herpes drugs using a recombinant herpes simplex virus type 1 (HSV-1) carrying BV TK gene. We found that HSV-1 carrying BV TK was similarly sensitive to GCV as HSV-1 carrying varicella zoster virus TK. In addition, we demonstrated that BV TK was not mutated in the GCV- and ACV-resistant HSV-1 carrying BV TK, suggesting that ACV- or GCV-resistant BV might be rare during treatment with these antiviral drugs. These data can provide a new insight into the properties of BV TK in terms of the development of drug resistance.


Asunto(s)
Herpes Simple , Herpesvirus Cercopitecino 1 , Herpesvirus Humano 1 , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Herpesvirus Humano 1/genética , Timidina Quinasa/genética , Timidina Quinasa/uso terapéutico , Aciclovir/farmacología , Aciclovir/uso terapéutico , Ganciclovir/farmacología , Herpes Simple/tratamiento farmacológico
5.
Artículo en Inglés | MEDLINE | ID: mdl-38083650

RESUMEN

With the demand for sophisticated techniques to easily prevent the deflection of needles, robotic CT (computed tomography)-guided puncture with an ultrafine needle is being investigated. Quantification of deflection is essential for accurate puncture with ultrafine needles. Research on the quantification of deflection caused by tissue reaction forces to which the beveled surface of the needle tip is in progress, and this method has been applied for deflection reduction and needle steering within the tissue. However, when the needle tip passes through a tissue boundary, the needle deflects regardless of the direction of the beveled surface. Although several methods have been proposed to reduce the deflection caused by the boundary surface, no curve puncture method has been constructed using the deflection. This work aimed to construct a refraction model that can back-calculate the curved path from the body surface to the target. Assumptions of the refraction model were made based on the results of ex vivo examination, and the model was validated through in vivo examination. A refraction model in which the refraction angle is linearly proportional to the needle penetration angle relative to the boundary was hypothesized. Validation test revealed that the correlation coefficient exceeded 0.9, which was similar to that of the model and suggested the biological adaptability of the proposed model. A curve puncture method using this refraction model will be developed in the future.


Asunto(s)
Agujas , Robótica , Punciones , Refracción Ocular
6.
Sci Rep ; 13(1): 3190, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823281

RESUMEN

Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.


Asunto(s)
Cyprinidae , Perciformes , Animales , Vasotocina/genética , Edición Génica , Perciformes/genética , Agresión , Cyprinidae/genética
7.
PLoS One ; 11(12): e0168114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28033336

RESUMEN

We have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments. In the first experiment, a capillary containing the cell suspension was illuminated with different light intensities in two regions. In the steady state, the differences of the cell numbers in the two regions normalized by the total number were proportional to the light difference, where the light intensity difference ranged from 0.5-2.0 µmol m-2 s-1. The proportional coefficient was positive (i.e., the bright region contained many microorganisms) when the mean light intensity was weak (1.25 µmol m-2 s-1), whereas it was negative when the mean intensity was strong (13.75 µmol m-2 s-1). In the second experiment, a shallow rectangular container of the suspension was illuminated with stepwise light intensities. The cell number density distribution exhibited a single peak at the position where the light intensity was about Ic ≃ 3.8 µmol m-2 s-1. These results suggest that the suspension of E. gracilis responded to the light gradient and that the favorable light intensity was Ic.


Asunto(s)
Euglena gracilis/fisiología , Luz , Estimulación Luminosa , Fototaxis/fisiología , Recuento de Células , Fenómenos Físicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA