Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small ; 20(23): e2308847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174599

RESUMEN

The use of a small organic molecular passivator is proven to be a successful strategy for producing higher-performing quasi-2D perovskite light-emitting diodes (PeLEDs). The small organic molecule can passivate defects on the grain surround and surface of perovskite crystal structures, preventing nonradiative recombination and charge trapping. In this study, a new small organic additive called 2, 8-dibromodibenzofuran (diBDF) is reported and examines its effectiveness as a passivating agent in high-performance green quasi-2D PeLEDs. The oxygen atom in diBDF, acting as a Lewis base, forms coordination bonds with uncoordinated Pb2+, so enhancing the performance of the device. In addition, the inclusion of diBDF in the quasi-2D perovskite results in a decrease in the abundance of low-n phases, hence facilitating efficient carrier mobility. Consequently, PeLED devices with high efficiency are successfully produced, exhibiting an external quantum efficiency of 19.9% at the emission wavelength of 517 nm and a peak current efficiency of 65.0 cd A-1.

2.
Polymers (Basel) ; 15(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896285

RESUMEN

In conventional fullerene-based organic photovoltaics (OPVs), in which the excited electrons from the donor are transferred to the acceptor, the electron charge transfer state (eECT) that electrons pass through has a great influence on the device's performance. In a bulk-heterojunction (BHJ) system based on a low bandgap non-fullerene acceptor (NFA), however, a hole charge transfer state (hECT) from the acceptor to the donor has a greater influence on the device's performance. The accurate determination of hECT is essential for achieving further enhancement in the performance of non-fullerene organic solar cells. However, the discovery of a method to determine the exact hECT remains an open challenge. Here, we suggest a simple method to determine the exact hECT level via deconvolution of the EL spectrum of the BHJ blend (ELB). To generalize, we have applied our ELB deconvolution method to nine different BHJ systems consisting of the combination of three donor polymers (PM6, PBDTTPD-HT, PTB7-Th) and three NFAs (Y6, IDIC, IEICO-4F). Under the conditions that (i) absorption of the donor and acceptor are separated sufficiently, and (ii) the onset part of the external quantum efficiency (EQE) is formed solely by the contribution of the acceptor only, ELB can be deconvoluted into the contribution of the singlet recombination of the acceptor and the radiative recombination via hECT. Through the deconvolution of ELB, we have clearly decided which part of the broad ELB spectrum should be used to apply the Marcus theory. Accurate determination of hECT is expected to be of great help in fine-tuning the energy level of donor polymers and NFAs by understanding the charge transfer mechanism clearly.

3.
Adv Mater ; 35(31): e2302143, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099626

RESUMEN

Solar cells (PSCs) with quasi-2D Ruddlesden-Popper perovskites (RPP) exhibit greater environmental stability than 3D perovskites; however, the low power conversion efficiency (PCE) caused by anisotropic crystal orientations and defect sites in the bulk RPP materials limit future commercialization. Herein, a simple post-treatment is reported for the top surfaces of RPP thin films (RPP composition of PEA2 MA4 Pb5 I16 = 5) in which zwitterionic n-tert-butyl-α-phenylnitrone (PBN) is used as the passivation material. The PBN molecules passivate the surface and grain boundary defects in the RPP and simultaneously induce vertical direction crystal orientations of the RPPs, which lead to efficient charge transport in the RPP photoactive materials. With this surface engineering methodology, the optimized devices exhibit a remarkably enhanced PCE of 20.05% as compared with the devices without PBN (≈17.53%) and excellent long-term operational stability with 88% retention of the initial PCE under continuous 1-sun irradiation for over 1000 h. The proposed passivation strategy provides new insights into the development of efficient and stable RPP-based PSCs.

5.
J Med Chem ; 66(1): 413-434, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36573286

RESUMEN

Dry eye disease (DED) is one of the most prevalent ocular diseases but has limited treatment options. Cystic fibrosis transmembrane conductance regulator (CFTR), a major chloride channel that stimulates fluid secretion in the ocular surface, may pave the way for new therapeutic strategies for DED. Herein, we report the optimization of Cact-3, a potent CFTR activator with poor solubility, to 16d, a potent CFTR activator with suitable solubility for eye drop formulation. Notably, 16d was well distributed in target tissues including cornea and conjunctiva with minimal systemic exposure in rabbit. Topical ocular instillation of 16d significantly enhanced tear secretion and improved corneal erosion in a mouse model of DED. In addition, 16d significantly reduced mRNA expression of pro-inflammatory cytokines including IL-1ß, IL-17, and TNF-α and MMP2 in cornea and conjunctiva of DED mice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Síndromes de Ojo Seco , Animales , Ratones , Conejos , Conjuntiva/metabolismo , Córnea , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/genética , Síndromes de Ojo Seco/metabolismo , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/metabolismo , Solubilidad , Lágrimas/metabolismo
6.
Exp Mol Med ; 54(9): 1563-1576, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131027

RESUMEN

Phospholipase D (PLD) is a potential therapeutic target against cancer. However, the contribution of PLD inhibition to the antitumor response remains unknown. We developed a potent and selective PLD1 inhibitor based on computer-aided drug design. The inhibitor enhanced apoptosis in colorectal cancer (CRC) cells but not in normal colonic cells, and in vitro cardiotoxicity was not observed. The inhibitor downregulated the Wnt/ß-catenin signaling pathway and reduced the migration, invasion, and self-renewal capacity of CRC cells. In cancer, therapeutic engagement of immunogenic cell death (ICD) leads to more effective responses by eliciting the antitumor immunity of T cells. The CRC cells treated with the inhibitor showed hallmarks of ICD, including downregulation of "do not eat-me" signals (CD24, CD47, programmed cell death ligand 1 [PD-L1]), upregulation of "eat-me" signal (calreticulin), release of high-mobility group Box 1, and ATP. PLD1 inhibition subsequently enhanced the phagocytosis of cancer cells by macrophages through the surface expression of costimulatory molecules; as a result, the cancer cells were more susceptible to cytotoxic T-cell-mediated killing. Moreover, PLD1 inhibition attenuated colitis-associated CRC and orthotopically injected tumors, probably by controlling multiple pathways, including Wnt signaling, phagocytosis checkpoints, and immune signaling. Furthermore, combination therapy with a PLD1 inhibitor and an anti-PD-L1 antibody further enhanced tumor regression via immune activation in the tumor environment. Collectively, in this study, PLD1 was identified as a critical regulator of the tumor microenvironment in colorectal cancer, suggesting the potential of PLD1 inhibitors for cancer immunotherapy based on ICD and immune activation. PLD1 inhibitors may act as promising immune modulators in antitumor treatment via ICD.


Asunto(s)
Neoplasias Colorrectales , Fosfolipasa D , Adenosina Trifosfato , Antígeno CD47/metabolismo , Calreticulina , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Humanos , Muerte Celular Inmunogénica , Inmunoterapia , Ligandos , Fosfolipasa D/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt
7.
Adv Mater ; 34(41): e2205268, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36030364

RESUMEN

Suppressing nonradiative recombination at the interface between the organometal halide perovskite (PVK) and the charge-transport layer (CTL) is crucial for improving the efficiency and stability of PVK-based solar cells (PSCs). Here, a new bathocuproine (BCP)-based nonconjugated polyelectrolyte (poly-BCP) is synthesized and this is introduced as a "dual-side passivation layer" between the tin oxide (SnO2 ) CTL and the PVK absorber. Poly-BCP significantly suppresses both bulk and interfacial nonradiative recombination by passivating oxygen-vacancy defects from the SnO2 side and simultaneously scavenges ionic defects from the other (PVK) side. Therefore, PSCs with poly-BCP exhibits a high power conversion efficiency (PCE) of 24.4% and a high open-circuit voltage of 1.21 V with a reduced voltage loss (PVK bandgap of 1.56 eV). The non-encapsulated PSCs also show excellent long-term stability by retaining 93% of the initial PCE after 700 h under continuous 1-sun irradiation in nitrogen atmosphere conditions.

8.
J Phys Chem Lett ; 12(27): 6418-6424, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34236208

RESUMEN

Carrier generation dynamics in binary PTB7-Th:COi8DFIC (1:1.5) and ternary PTB7-Th:COi8DFIC:PC71BM (1:1.05:0.45) composites were investigated to identify the origins of high power conversion efficiencies (PCEs) in ternary bulk-heterojunction (BHJ) organic solar cells. Steady-state photoluminescence and time-resolved photoinduced absorption spectroscopic analyses revealed that the ternary composite exhibited faster hole transfer from COi8DFIC to PTB7-Th (8 ps compared to 21 ps in the binary composite), which led to an improved exciton separation yield in COi8DFIC (94% compared to 68% in the binary composite). Improved intermixing of the component materials and efficient electron transfer from COi8DFIC to PC71BM facilitated enhancement in the hole transfer rate. The COi8DFIC-to-PC71BM electron transfer promoted an electron transport cascade over PTB7-Th, COi8DFIC, and PC71BM, which efficiently deactivated back-electron transfer (carrier recombination loss) from COi8DFIC to PTB7-Th at ∼160 ps and assisted in improving the PCE of the ternary BHJ cell (13.4% compared to 10.5% in the binary BHJ cell).

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119227, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248892

RESUMEN

To understand the current limitations of nonfullerene-based organic solar cells (OSCs), the early-time dynamics of the carrier generation in the high performance bulk heterojunction (BHJ) blend of a semiconducting polymer, PBDB-T, and the low bandgap nonfullerene acceptor, ITIC-m, are investigated. After photoexcitation, photo-induced excitons are separated through the ultrafast (~200 fs) electron transfer process from PBDB-T to ITIC-m and through the fast (3-6 ps) hole transfer process from ITIC-m to PBDB-T. However, a part of the separated charges recombines in the non-geminate (long-range) charge-transferred (CT) states. The yield of mobile carriers is correspondingly decreased by recombination in the CT states. In our measurements, the carrier recombination loss in the CT state is decreased by optimizing the BHJ morphology, especially for showing better electron mobility using a processing additive (1,8-diiodooctane) during the fabrication of the composite film, as evidenced by the decreased CT band intensity at ~30 ps and the increased polaron band intensity, which eventually improve power conversion efficiencies (PCEs).

10.
Bioorg Med Chem Lett ; 27(3): 496-500, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043794

RESUMEN

Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cell. In AML, a mutation in FLT3 is commonly occurs and is associated with poor prognosis. We have previously reported that thieno[2,3-d]pyrimidine derivative compound 1 exhibited better antiproliferative activity against MV4-11 cells which harbor mutant FLT3 than AC220, which is a well-known FLT3 inhibitor, and has good microsomal stability. However, compound 1 had poor solubility. We then carried out further structural modification at the C2 and the C6 positions of thieno[2,3-d]pyrimidine scaffold. Compound 13b, which possesses a thiazole moiety at the C2 position, exhibited better antiproliferative activity than compound 1 and showed increased solubility and moderate microsomal stability. These results indicate that compound 13b could be a promising potential FLT inhibitor for AML chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Pirimidinas/química , Solubilidad , Relación Estructura-Actividad , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
11.
Eur J Med Chem ; 85: 399-407, 2014 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-25108079

RESUMEN

The most common mutations in acute myeloid leukemia (AML) are those that cause the activation of FMS-like tyrosine kinase 3 (FLT3). Therefore, FLT3 is regarded as a potential target for the treatment of AML. A novel series of thieno[2,3-d]pyrimidine-based analogs was designed and synthesized as FLT3 inhibitors. All synthesized compounds were assayed for the tyrosine kinase activity of FLT3 and growth inhibitory activity in four human leukemia cell lines (THP1, MV4-11, K562, and HL-60). Among these compounds, compound 17a, which possesses relatively short and simple substituents at the C6 position of thieno[2,3-d]pyrimidine, emerged as the most promising anti-leukemic agent. Compound 17a exhibited potent inhibition of FLT3-positive leukemic cell growth and of the FLT3 D835Y kinase; such inhibition is required for the successful treatment of AML. The data supports the further investigation of this class of compounds as potential anti-leukemic agents.


Asunto(s)
Diseño de Fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Pirimidinas/química , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Estudios de Factibilidad , Humanos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/síntesis química , Pirimidinas/uso terapéutico , Relación Estructura-Actividad
12.
BMB Rep ; 47(10): 558-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24393529

RESUMEN

OASL1 is a member of the 2'-5'-oligoadenylate synthetase (OAS) family and promotes viral clearance by activating RNase L. OASL1 interacts with the 5'-untranslated region (UTR) of interferon regulatory factor 7 (Irf7) and inhibits its translation. To identify the secondary structure required for OASL1 binding, we examined the 5'-UTR of the Irf7 transcript using "selective 2'-hydroxyl acylation analyzed by primer extension" (SHAPE). SHAPE takes advantage of the selective acylation of residues in single-stranded regions by 1-methyl-7-nitroisatoic anhydride (1M7). We found five major acylation sites located in, or next to, predicted single-stranded regions of the Irf7 5'-UTR. These results demonstrate the involvement of the stem structure of the Irf7 5'-UTR in the regulation of Irf7 translation, mediated by OASL1.


Asunto(s)
Regiones no Traducidas 5'/genética , Cartilla de ADN/metabolismo , Factor 7 Regulador del Interferón/genética , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa/métodos , Acilación , Adenosina/metabolismo , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Hidroxilación , Datos de Secuencia Molecular , Oxazinas/metabolismo
13.
Eur J Med Chem ; 69: 670-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24095759

RESUMEN

RhoB is expressed during tumor cell proliferation, survival, invasion, and metastasis. In malignant progression, the expression levels of RhoB are commonly attenuated. RhoB is known to be linked to the regulation of the PI3K/Akt survival pathways. Based on aliphatic amido-quaternary ammonium salts that induce apoptosis via up-regulation of RhoB, we synthesized novel aliphatic sulfonamido-quaternary ammonium salts. These new synthetic compounds were evaluated for their biological activities using an in vitro RhoB promoter assay in HeLa cells, and in a growth inhibition assay using human cancer cell lines including PC-3, NUGC-3, MDA-MB-231, ACHN, HCT-15, and NCI-H23. Compound 5b (ethyl-dimethyl-{3-[methyl-(tetradecane-1-sulfonyl)-amino]-propyl}-ammonium; iodide) was the most promising anticancer agent in the series, based upon the potency of growth inhibition and RhoB promotion. These new aliphatic sulfonamido-quaternary ammonium salts could be a valuable series for development of new anticancer chemotherapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Sulfonamidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Sales (Química)/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad , Proteína de Unión al GTP rhoB/antagonistas & inhibidores , Proteína de Unión al GTP rhoB/biosíntesis , Proteína de Unión al GTP rhoB/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA