Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0298002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635587

RESUMEN

The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.


Asunto(s)
Microbiota , Escifozoos , Animales , Escifozoos/fisiología , Metagenoma , Bacterias/genética , Océano Pacífico
2.
mSphere ; 8(3): e0031522, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37154768

RESUMEN

Bacteria are important mediators of the larval transition from pelagic to benthic environments for marine organisms. Bacteria can therefore dictate species distribution and success of an individual. Despite the importance of marine bacteria to animal ecology, the identity of inductive microbes for many invertebrates are unknown. Here, we report the first successful isolation of bacteria from natural substrates capable of inducing settlement and metamorphosis of the planula larvae stage of a true jellyfish, the upside-down jellyfish Cassiopea xamachana. Inductive bacteria belonged to multiple phyla, with various capacity to induce settlement and metamorphosis. The most inductive isolates belonged to the genus Pseudoalteromonas, a marine bacterium known to induce the pelago-benthic transition in other marine invertebrates. In sequencing the genome of the isolated Pseudoalteromonas and a semiinductive Vibrio, we found biosynthetic pathways previously implicated in larval settlement were absent in Cassiopea inducing taxa. We instead identified other candidate biosynthetic gene clusters involved in larval metamorphosis. These findings could provide hints to the ecological success of C. xamachana compared to sympatric congeneric species within mangrove environments and provide avenues to investigate the evolution of animal-microbe interactions. IMPORTANCE The pelagic to benthic transition for the larvae of many marine invertebrate species are thought to be triggered by microbial cues. The microbial species and exact cue that initiates this transition remains unknown for many animals. Here, we identify two bacterial species, a Pseudoalteromonas and a Vibrio, isolated from natural substrate that induce settlement and metamorphosis of the upside-down jellyfish Cassiopea xamachana. Genomic sequencing revealed both isolates lacked genes known to induce the life history transition in other marine invertebrates. Instead, we identified other gene clusters that may be important for jellyfish settlement and metamorphosis. This study is the first step to identifying the bacterial cue for C. xamachana, an ecologically important species to coastal ecosystems and an emerging model system. Understanding the bacterial cues provides insight into marine invertebrate ecology and evolution of animal-microbe interactions.


Asunto(s)
Ecosistema , Escifozoos , Animales , Larva , Invertebrados , Genómica , Bacterias/metabolismo
3.
Gigascience ; 8(7)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31257419

RESUMEN

BACKGROUND: Anthozoa, Endocnidozoa, and Medusozoa are the 3 major clades of Cnidaria. Medusozoa is further divided into 4 clades, Hydrozoa, Staurozoa, Cubozoa, and Scyphozoa-the latter 3 lineages make up the clade Acraspeda. Acraspeda encompasses extraordinary diversity in terms of life history, numerous nuisance species, taxa with complex eyes rivaling other animals, and some of the most venomous organisms on the planet. Genomes have recently become available within Scyphozoa and Cubozoa, but there are currently no published genomes within Staurozoa and Cubozoa. FINDINGS: Here we present 3 new draft genomes of Calvadosia cruxmelitensis (Staurozoa), Alatina alata (Cubozoa), and Cassiopea xamachana (Scyphozoa) for which we provide a preliminary orthology analysis that includes an inventory of their respective venom-related genes. Additionally, we identify synteny between POU and Hox genes that had previously been reported in a hydrozoan, suggesting this linkage is highly conserved, possibly dating back to at least the last common ancestor of Medusozoa, yet likely independent of vertebrate POU-Hox linkages. CONCLUSIONS: These draft genomes provide a valuable resource for studying the evolutionary history and biology of these extraordinary animals, and for identifying genomic features underlying venom, vision, and life history traits in Acraspeda.


Asunto(s)
Cnidarios/genética , Genoma , Animales , Cnidarios/clasificación , Venenos de Cnidarios/genética , Venenos de Cnidarios/metabolismo , Filogenia , Sintenía , Transcriptoma
4.
PLoS One ; 5(12): e14473, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21217820

RESUMEN

BACKGROUND: The accumulation of deleterious mutations can drastically reduce population mean fitness. Self-fertilization is thought to be an effective means of purging deleterious mutations. However, widespread linkage disequilibrium generated and maintained by self-fertilization is predicted to reduce the efficacy of purging when mutations are present at multiple loci. METHODOLOGY/PRINCIPAL FINDINGS: We tested the ability of self-fertilizing populations to purge deleterious mutations at multiple loci by exposing obligately self-fertilizing populations of Caenorhabditis elegans to a range of elevated mutation rates and found that mutations accumulated, as evidenced by a reduction in mean fitness, in each population. Therefore, purging in obligate selfing populations is overwhelmed by an increase in mutation rate. Surprisingly, we also found that obligate and predominantly self-fertilizing populations exposed to very high mutation rates exhibited consistently greater fitness than those subject to lesser increases in mutation rate, which contradicts the assumption that increases in mutation rate are negatively correlated with fitness. The high levels of genetic linkage inherent in self-fertilization could drive this fitness increase. CONCLUSIONS: Compensatory mutations can be more frequent under high mutation rates and may alleviate a portion of the fitness lost due to the accumulation of deleterious mutations through epistatic interactions with deleterious mutations. The prolonged maintenance of tightly linked compensatory and deleterious mutations facilitated by self-fertilization may be responsible for the fitness increase as linkage disequilibrium between the compensatory and deleterious mutations preserves their epistatic interaction.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Eliminación de Gen , Mutación , Autofecundación/genética , Animales , Análisis Mutacional de ADN , Relación Dosis-Respuesta a Droga , Epistasis Genética , Metanosulfonato de Etilo/toxicidad , Ligamiento Genético , Desequilibrio de Ligamiento , Modelos Genéticos , Mutágenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA