Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255942

RESUMEN

Diabetic Kidney Disease (DKD) is a significant complication of diabetes and primary cause of end-stage renal disease globally. The exact mechanisms underlying DKD remain poorly understood, but multiple factors, including the renin-angiotensin-aldosterone system (RAAS), play a key role in its progression. Aldosterone, a mineralocorticoid steroid hormone, is one of the key components of RAAS and a potential mediator of renal damage and inflammation in DKD. miRNAs, small noncoding RNA molecules, have attracted interest due to their regulatory roles in numerous biological processes. These processes include aldosterone signaling and mineralocorticoid receptor (MR) expression. Numerous miRNAs have been recognized as crucial regulators of aldosterone signaling and MR expression. These miRNAs affect different aspects of the RAAS pathway and subsequent molecular processes, which impact sodium balance, ion transport, and fibrosis regulation. This review investigates the regulatory roles of particular miRNAs in modulating aldosterone signaling and MR activation, focusing on their impact on kidney injury, inflammation, and fibrosis. Understanding the complex interaction between miRNAs and the RAAS could lead to a new strategy to target aldosterone signaling and MR activation using miRNAs. This highlights the potential of miRNA-based interventions for DKD, with the aim of enhancing kidney outcomes in individuals with diabetes.


Asunto(s)
Nefropatías Diabéticas , MicroARNs , Humanos , Aldosterona , Nefropatías Diabéticas/genética , Fibrosis , Inflamación , MicroARNs/genética , Mineralocorticoides , Receptores de Mineralocorticoides/genética
4.
Cells Dev ; 177: 203882, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37956740

RESUMEN

Phosphorylated histone H2AX (γH2AX) represents a sensitive molecular marker of DNA double-strand breaks (DSBs) and is implicated in stem cell biology. We established a model of mouse embryonic stem cell (mESC) differentiation and examined the dynamics of γH2AX foci during the process. Our results revealed high numbers of γH2AX foci in undifferentiated mESCs, decreasing as the cells differentiated towards the endothelial cell lineage. Notably, we observed two distinct patterns of γH2AX foci: the typical discrete γH2AX foci, which colocalize with the transcriptionally permissive chromatin mark H3K4me3, and the less well-characterized clustered γH2AX regions, which were only observed in intermediate progenitor cells. Next, we explored responses of mESCs to γ-radiation (137Cs). Following exposure to γ-radiation, mESCs showed a reduction in cell viability and increased γH2AX foci, indicative of radiosensitivity. Despite irradiation, surviving mESCs retained their differentiation potential. To further exemplify our findings, we investigated neural stem progenitor cells (NSPCs). Similar to mESCs, NSPCs displayed clustered γH2AX foci associated with progenitor cells and discrete γH2AX foci indicative of embryonic stem cells or differentiated cells. In conclusion, our findings demonstrate that γH2AX serves as a versatile marker of DSBs and may have a role as a biomarker in stem cell differentiation. The distinct patterns of γH2AX foci in differentiating mESCs and NSPCs provide valuable insights into DNA repair dynamics during differentiation, shedding light on the intricate balance between genomic integrity and cellular plasticity in stem cells. Finally, the clustered γH2AX foci observed in intermediate progenitor cells is an intriguing feature, requiring further exploration.


Asunto(s)
Reparación del ADN , Células Madre Embrionarias de Ratones , Animales , Ratones , Reparación del ADN/genética , Roturas del ADN de Doble Cadena , Células Madre Embrionarias , Diferenciación Celular/genética
5.
Signal Transduct Target Ther ; 9(1): 2, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38161208

RESUMEN

ß-cells are a type of endocrine cell found in pancreatic islets that synthesize, store and release insulin. In type 1 diabetes (T1D), T-cells of the immune system selectively destroy the insulin-producing ß-cells. Destruction of these cells leads to a lifelong dependence on exogenous insulin administration for survival. Consequently, there is an urgent need to identify novel therapies that stimulate ß-cell growth and induce ß-cell function. We and others have shown that pancreatic ductal progenitor cells are a promising source for regenerating ß-cells for T1D owing to their inherent differentiation capacity. Default transcriptional suppression is refractory to exocrine reaction and tightly controls the regenerative potential by the EZH2 methyltransferase. In the present study, we show that transient stimulation of exocrine cells, derived from juvenile and adult T1D donors to the FDA-approved EZH2 inhibitors GSK126 and Tazemetostat (Taz) influence a phenotypic shift towards a ß-like cell identity. The transition from repressed to permissive chromatin states are dependent on bivalent H3K27me3 and H3K4me3 chromatin modification. Targeting EZH2 is fundamental to ß-cell regenerative potential. Reprogrammed pancreatic ductal cells exhibit insulin production and secretion in response to a physiological glucose challenge ex vivo. These pre-clinical studies underscore the potential of small molecule inhibitors as novel modulators of ductal progenitor differentiation and a promising new approach for the restoration of ß-like cell function.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Diferenciación Celular/genética , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
6.
Diabetes Res Clin Pract ; 204: 110918, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37748713

RESUMEN

AIMS: To investigate epigenomic indices of diabetic kidney disease (DKD) susceptibility among high-risk populations with type 2 diabetes mellitus. METHODS: KDIGO (Kidney Disease: Improving Global Outcomes) clinical guidelines were used to classify people living with or without DKD. Differential gene methylation of DKD was then assessed in a discovery Aboriginal Diabetes Study cohort (PROPHECY, 89 people) and an external independent study from Thailand (THEPTARIN, 128 people). Corresponding mRNA levels were also measured and linked to levels of albuminuria and eGFR. RESULTS: Increased DKD risk was associated with reduced methylation and elevated gene expression in the PROPHECY discovery cohort of Aboriginal Australians and these findings were externally validated in the THEPTARIN diabetes registry of Thai people living with type 2 diabetes mellitus. CONCLUSIONS: Novel epigenomic scores can improve diagnostic performance over clinical modelling using albuminuria and GFR alone and can distinguish DKD susceptibility.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Albuminuria/complicaciones , Susceptibilidad a Enfermedades/complicaciones , Epigenómica , Australia , Riñón , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Biomarcadores , Tasa de Filtración Glomerular
7.
Clin Epigenetics ; 15(1): 101, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37309004

RESUMEN

BACKGROUND: Therapeutic replacement of pancreatic endocrine ß-cells is key to improving hyperglycaemia caused by insulin-dependent diabetes . Whilst the pool of ductal progenitors, which give rise to the endocrine cells, are active during development, neogenesis of islets is repressed in the human adult. Recent human donor studies have demonstrated the role of EZH2 inhibition in surgically isolated exocrine cells showing reactivation of insulin expression and the influence on the H3K27me3 barrier to ß-cell regeneration. However, those studies fall short on defining the cell type active in transcriptional reactivation events. This study examines the role of the regenerative capacity of human pancreatic ductal cells when stimulated with pharmacological inhibitors of the EZH2 methyltransferase. RESULTS: Human pancreatic ductal epithelial cells were stimulated with the EZH2 inhibitors GSK-126, EPZ6438, and triptolide using a 2- and 7-day protocol to determine their influence on the expression of core endocrine development marker NGN3, as well as ß-cell markers insulin, MAFA, and PDX1. Chromatin immunoprecipitation studies show a close correspondence of pharmacological EZH2 inhibition with reduced H3K27me3 content of the core genes, NGN3, MAFA and PDX1. Consistent with the reduction of H3K27me3 by pharmacological inhibition of EZH2, we observe measurable immunofluorescence staining of insulin protein and glucose-sensitive insulin response. CONCLUSION: The results of this study serve as a proof of concept for a probable source of ß-cell induction from pancreatic ductal cells that are capable of influencing insulin expression. Whilst pharmacological inhibition of EZH2 can stimulate secretion of detectable insulin from ductal progenitor cells, further studies are required to address mechanism and the identity of ductal progenitor cell targets to improve likely methods designed to reduce the burden of insulin-dependent diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Adulto , Humanos , Histonas , Metilación de ADN , Células Epiteliales , Proteína Potenciadora del Homólogo Zeste 2
8.
Cardiovasc Eng Technol ; 14(4): 605-614, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165253

RESUMEN

PURPOSE: The Lumi-Solve photo-angioplasty drug eluting balloon catheter (DEBc) may afford safety advantages over current DEBc. Lumi-Solve utilises the guidewire (GW) port and lumen to deliver fibre-optic UV365nm light to the angioplasty balloon which may be problematic. We explore and evaluate alternative Lumi-Solve design options to circumvent fibre-optic use of the GW port and lumen which may enhance efficacy and clinical utility. METHODS: Effects of guidewire shadowing (GWS) on visible and UV365nm light transmission were evaluated and modelled in-silico. To evaluate the effect of a dedicated intra-balloon fibre-optic port, modified angioplasty balloons and sections of translucent polyethylene terephthalate (PET) GW port tubing were utilised. Investigation of the effect of GWS on chemical and biological photo-activation of balloon surface drug was performed utilising LCMS analysis and inhibition of histone deacetylase activity (HDACi) was measured in human umbilical vein endothelial cells (HUVEC). RESULTS: Parallel fibre-optic and GW port configurations generated a GWS of approximately 18.0% of the evaluable balloon surface area and attenuated both visible and UV light intensity by 20.0-25.0% and reduced chemical photo-activation of balloon surface drug and HDACi by at least 40-45%. Alternative fibre-optic port configurations including a spiral design significantly mitigated GWS effects on UV light transmission. CONCLUSIONS: To avoid use of the GW port and its associated complications a dedicated third port and lumen for the Lumi-Solve fibre-optic may be required. To maximize balloon surface chemical and biological photo-activation, non-parallel, intra-balloon, fibre-optic lumen trajectories, including a spiral design may be useful.


Asunto(s)
Angioplastia de Balón , Dispositivos de Acceso Vascular , Humanos , Angioplastia de Balón/efectos adversos , Células Endoteliales de la Vena Umbilical Humana
9.
J Clin Invest ; 133(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36633903

RESUMEN

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Asunto(s)
Diabetes Mellitus Tipo 1 , Nefropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Estudio de Asociación del Genoma Completo , Células Endoteliales/metabolismo , Metilación de ADN , Insulina/metabolismo
10.
Signal Transduct Target Ther ; 7(1): 248, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35864094

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease that selectively destroys insulin-producing ß-cells in the pancreas. An unmet need in diabetes management, current therapy is focussed on transplantation. While the reprogramming of progenitor cells into functional insulin-producing ß-cells has also been proposed this remains controversial and poorly understood. The challenge is determining why default transcriptional suppression is refractory to exocrine reactivation. After the death of a 13-year-old girl with established insulin-dependent T1D, pancreatic cells were harvested in an effort to restore and understand exocrine competence. The pancreas showed classic silencing of ß-cell progenitor genes with barely detectable insulin (Ins) transcript. GSK126, a highly selective inhibitor of EZH2 methyltransferase activity influenced H3K27me3 chromatin content and transcriptional control resulting in the expression of core ß-cell markers and ductal progenitor genes. GSK126 also reinstated Ins gene expression despite absolute ß-cell destruction. These studies show the refractory nature of chromatin characterises exocrine suppression influencing ß-cell plasticity. Additional regeneration studies are warranted to determine if the approach of this n-of-1 study generalises to a broader T1D population.


Asunto(s)
Diabetes Mellitus Tipo 1 , Páncreas Exocrino , Adolescente , Cromatina , Diabetes Mellitus Tipo 1/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos , Insulina/genética , Insulina/metabolismo , Páncreas/metabolismo , Páncreas Exocrino/metabolismo
11.
Diabetes ; 71(6): 1282-1298, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35275988

RESUMEN

Excessive production of renal reactive oxygen species (ROS) plays a major role in diabetic kidney disease (DKD). Here, we provide key findings demonstrating the predominant pathological role of the pro-oxidant enzyme NADPH oxidase 5 (NOX5) in DKD, independent of the previously characterized NOX4 pathway. In patients with diabetes, we found increased expression of renal NOX5 in association with enhanced ROS formation and upregulation of ROS-sensitive factors early growth response 1 (EGR-1), protein kinase C-α (PKC-α), and a key metabolic gene involved in redox balance, thioredoxin-interacting protein (TXNIP). In preclinical models of DKD, overexpression of NOX5 in Nox4-deficient mice enhances kidney damage by increasing albuminuria and augmenting renal fibrosis and inflammation via enhanced ROS formation and the modulation of EGR1, TXNIP, ERK1/2, PKC-α, and PKC-ε. In addition, the only first-in-class NOX inhibitor, GKT137831, appears to be ineffective in the presence of NOX5 expression in diabetes. In vitro, silencing of NOX5 in human mesangial cells attenuated upregulation of EGR1, PKC-α, and TXNIP induced by high glucose levels, as well as markers of inflammation (TLR4 and MCP-1) and fibrosis (CTGF and collagens I and III) via reduction in ROS formation. Collectively, these findings identify NOX5 as a superior target in human DKD compared with other NOX isoforms such as NOX4, which may have been overinterpreted in previous rodent studies.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Humanos , Inflamación/metabolismo , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 5/genética , NADPH Oxidasa 5/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Clin Epigenetics ; 13(1): 58, 2021 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-33743782

RESUMEN

BACKGROUND: Valproic acid (VPA) is one of the most commonly used anti-epileptic drugs with pharmacological actions on GABA and blocking voltage-gated ion channels. VPA also inhibits histone deacetylase (HDAC) activity. Suberoylanilide hydroxamic acid is also a member of a larger class of compounds that inhibit HDACs. At the time of this article, there are 123 active international clinical trials for VPA (also known as valproate, convulex, divalproex, and depakote) and SAHA (vorinostat, zolinza). While it is well known that VPA and SAHA influence the accumulation of acetylated lysine residues on histones, their true epigenetic complexity remains poorly understood. RESULTS: Primary human cells were exposed to VPA and SAHA to understand the extent of histone acetylation (H3K9/14ac) using chromatin immunoprecipitation followed by sequencing (ChIP-seq). Because histone acetylation is often associated with modification of lysine methylation, we also examined H3K4me3 and H3K9me3. To assess the influence of the HDAC inhibitors on gene expression, we used RNA sequencing (RNA-seq). ChIP-seq reveals a distribution of histone modifications that is robust and more broadly regulated than previously anticipated by VPA and SAHA. Histone acetylation is a characteristic of the pharmacological inhibitors that influenced gene expression. Surprisingly, we observed histone deacetylation by VPA stimulation is a predominant signature following SAHA exposure and thus defines an acetylation/deacetylation (Ac/Dc) axis. ChIP-seq reveals regionalisation of histone acetylation by VPA and broader deacetylation by SAHA. Independent experiments confirm H3K9/14 deacetylation of NFκB target genes by SAHA. CONCLUSIONS: The results provide an important framework for understanding the Ac/Dc axis by highlighting a broader complexity of histone modifications by the most established and efficacious anti-epileptic medication in this class, VPA and comparison with the broad spectrum HDAC inhibitor, SAHA.


Asunto(s)
Epilepsia/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Ácido Valproico/efectos adversos , Ácido Valproico/uso terapéutico , Vorinostat/efectos adversos , Vorinostat/uso terapéutico , Acetilación/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Epilepsia/genética , Regulación de la Expresión Génica , Histona Desacetilasas/genética , Histonas/genética , Humanos
14.
NPJ Regen Med ; 6(1): 7, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580013

RESUMEN

The role of DNA methylation in ß-cell neogenesis is poorly understood. We report that during the process of induced cell reprogramming, methylation content of the Ngn3 and Sox11 genes are diminished. These findings emphasise DNA methylation is a barrier in ß-cell regeneration in adulthood, a well described pathophysiological phenomenon of major significance in explaining ß-cell deficiency in diabetes in the adult pancreas.

15.
Biomed Pharmacother ; 135: 111181, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33395607

RESUMEN

Branched-chain amino acids (BCAA) reverse malnutrition and l-carnitine leads to the reduction of hyperammonemia and muscle cramps in cirrhotic patients. BCAA and l-carnitine are involved in glucose and fatty acid metabolism, however their mechanistic activity in cirrhotic liver is not fully understood. We aim to define the molecular mechanism(s) and combined effects of BCAA and l-carnitine using a cirrhotic rat model. Rats were administered carbon tetrachloride for 10 weeks to induce cirrhosis. During the last 6 weeks of administration, cirrhotic rats received BCAA, l-carnitine or a combination of BCAA and l-carnitine daily via gavage. We found that BCAA and l-carnitine treatments significantly improved hepatocellular function associated with reduced triglyceride level, lipid deposition and adipophilin expression, in cirrhotic liver. Lipidomic analysis revealed dynamic changes in hepatic lipid composition by BCAA and l-carnitine administrations. BCAA and l-carnitine globally increased molecular species of phosphatidylcholine. Liver triacylglycerol and phosphatidylcholine hydroperoxides were significantly decreased by BCAA and l-carnitine. Furthermore, serum and liver ATP levels were significantly increased in all treatments, which were attributed to the elevation of mature cardiolipins and mitochondrial component gene expressions. Finally, BCAA and l-carnitine dramatically reduced hepatocellular death. In conclusion, BCAA and l-carnitine treatments attenuate hepatocellular damage through the reduction of lipid peroxides and the overall maintenance of mitochondrial integrity within the cirrhotic liver. These effectiveness of BCAA and l-carnitine support the therapeutic strategies in human chronic liver diseases.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacología , Carnitina/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado Graso/prevención & control , Hepatocitos/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Cirrosis Hepática Experimental/prevención & control , Hígado/efectos de los fármacos , Animales , Tetracloruro de Carbono , Muerte Celular/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado Graso/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Ratas Wistar
16.
Sci Rep ; 11(1): 2163, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495488

RESUMEN

Because the liver plays a major role in metabolic homeostasis and secretion of clotting factors and inflammatory innate immune proteins, there is interest in understanding the mechanisms of hepatic cell activation under hyperglycaemia and whether this can be attenuated pharmacologically. We have previously shown that hyperglycaemia stimulates major changes in chromatin organization and metabolism in hepatocytes, and that the histone deacetylase inhibitor valproic acid (VPA) is able to reverse some of these metabolic changes. In this study, we have used RNA-sequencing (RNA-seq) to investigate how VPA influences gene expression in hepatocytes. Interesting, we observed that VPA attenuates hyperglycaemia-induced activation of complement and coagulation cascade genes. We also observe that many of the gene activation events coincide with changes to histone acetylation at the promoter of these genes indicating that epigenetic regulation is involved in VPA action.


Asunto(s)
Coagulación Sanguínea/genética , Proteínas del Sistema Complemento/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hiperglucemia/sangre , Hiperglucemia/genética , Ácido Valproico/farmacología , Coagulación Sanguínea/efectos de los fármacos , Proteínas del Sistema Complemento/efectos de los fármacos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
17.
Cell Mol Life Sci ; 78(6): 2929-2948, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33104844

RESUMEN

Macrophages are innate immune cells that contribute to classical immune functions and tissue homeostasis. Ubiquitin-specific protease 2 (USP2) controls cytokine production in macrophages, but its organ-specific roles are still unknown. In this study, we generated myeloid-selective Usp2 knockout (msUsp2KO) mice and specifically explored the roles of testicular macrophage-derived USP2 in reproduction. The msUsp2KO mice exhibited normal macrophage characteristics in various tissues. In the testis, macrophage Usp2 deficiency negligibly affected testicular macrophage subpopulations, spermatogenesis, and testicular organogenesis. However, frozen-thawed sperm derived from msUsp2KO mice exhibited reduced motility, capacitation, and hyperactivation. In addition, macrophage Usp2 ablation led to a decrease in the sperm population exhibiting high intracellular pH, calcium influx, and mitochondrial membrane potential. Interrupted pronuclei formation in eggs was observed when using frozen-thawed sperm from msUsp2KO mice for in vitro fertilization. Administration of granulocyte macrophage-colony stimulating factor (GM-CSF), whose expression was decreased in testicular macrophages derived from msUsp2KO mice, restored mitochondrial membrane potential and total sperm motility. Our observations demonstrate a distinct role of the deubiquitinating enzyme in organ-specific macrophages that directly affect sperm function.


Asunto(s)
Macrófagos/metabolismo , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Calcio/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Fertilización In Vitro , Congelación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Concentración de Iones de Hidrógeno , Macrófagos/citología , Macrófagos/inmunología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Motilidad Espermática/efectos de los fármacos , Testículo/anatomía & histología , Testículo/fisiología , Testosterona/metabolismo , Tretinoina/metabolismo , Ubiquitina Tiolesterasa/deficiencia , Ubiquitina Tiolesterasa/genética
18.
Cell Rep ; 31(3): 107548, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320649

RESUMEN

Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by ß-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of ß-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Lisina/metabolismo , beta-Glucanos/metabolismo , Animales , Humanos , Inmunidad , Ratones , Fosforilación Oxidativa
20.
iScience ; 17: 288-301, 2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31323475

RESUMEN

In the heart, primary microRNA-208b (pri-miR-208b) and Myheart (Mhrt) are long non-coding RNAs (lncRNAs) encoded by the cardiac myosin heavy chain genes. Although preclinical studies have shown that lncRNAs regulate gene expression and are protective for pathological hypertrophy, the mechanism underlying sex-based differences remains poorly understood. In this study, we examined DNA- and RNA-methylation-dependent regulation of pri-miR-208b and Mhrt. Expression of pri-miR-208b is elevated in the left ventricle of the female heart. Despite indistinguishable DNA methylation between sexes, the interaction of MeCP2 on chromatin is subject to RNase digestion, highlighting that affinity of the methyl-CG reader is broader than previously thought. A specialized procedure to isolate RNA from soluble cardiac chromatin emphasizes sex-based affinity of an MeCP2 co-repressor complex with Rest and Hdac2. Sex-specific Mhrt methylation chromatinizes MeCP2 at the pri-miR-208b promoter and extends the functional relevance of default transcriptional suppression in the heart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...