Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 114(19): 195002, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024175

RESUMEN

A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

2.
Phys Rev Lett ; 108(15): 155001, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22587260

RESUMEN

A compact fast core heating experiment is described. A 4-J 0.4-ns output of a laser-diode-pumped high-repetition laser HAMA is divided into four beams, two of which counterilluminate double-deuterated polystyrene foils separated by 100 µm for implosion. The remaining two beams, compressed to 110 fs for fast heating, illuminate the same paths. Hot electrons produced by the heating pulses heat the imploded core, emitting x-ray radiations >20 eV and yielding some 10(3) thermal neutrons.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(2 Pt 2): 026401, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14995560

RESUMEN

Energetic proton generation in low-density plastic (C5H10) foam by intense femtosecond laser pulse irradiation has been studied experimentally and numerically. Plastic foam was successfully produced by a sol-gel method, achieving an average density of 10 mg/cm(3). The foam target was irradiated by 100 fs pulses of a laser intensity 1 x 10(18) W/cm(2). A plateau structure extending up to 200 keV was observed in the energy distribution of protons generated from the foam target, with the plateau shape well explained by Coulomb explosion of lamella in the foam. The laser-foam interaction and ion generation were studied qualitatively by two-dimensional particle-in-cell simulations, which indicated that energetic protons are mainly generated by the Coulomb explosion. From the results, the efficiency of energetic ion generation in a low-density foam target by Coulomb explosion is expected to be higher than in a gas-cluster target.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...