Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vitam Horm ; 98: 487-523, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25817878

RESUMEN

Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases.


Asunto(s)
Adenosina/metabolismo , Transporte Biológico/fisiología , Sistema Nervioso Central/crecimiento & desarrollo , Neuroprotección , Proteínas de Transporte de Nucleósidos/metabolismo , Receptores Purinérgicos P1/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos , Transducción de Señal/fisiología
2.
Glia ; 63(3): 497-511, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25421817

RESUMEN

Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation.


Asunto(s)
Microglía/enzimología , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Animales , Apoptosis/fisiología , Proteína Tirosina Quinasa CSK , Línea Celular , Células Cultivadas , Pollos , Gliosis/enzimología , Gliosis/patología , Ácido Glutámico/metabolismo , Células HEK293 , Humanos , Inflamación/enzimología , Inflamación/patología , Isquemia/enzimología , Isquemia/patología , Lipopolisacáridos , Masculino , Ratones , Microglía/patología , Neuronas/fisiología , Fagocitosis/fisiología , Ratas Wistar , Daño por Reperfusión/enzimología , Daño por Reperfusión/patología , Neuronas Retinianas/patología , Neuronas Retinianas/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Familia-src Quinasas/metabolismo
3.
Free Radic Biol Med ; 79: 45-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25486178

RESUMEN

3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naïve (nonactivated) microglia are believed to generate little ROS under basal conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by Aß oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage.


Asunto(s)
Ácido Clorogénico/farmacología , Ácido Glutámico/metabolismo , Microglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas pp60(c-src)/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Animales , Células HEK293 , Humanos , Microglía/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...