Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fundam Clin Pharmacol ; 37(2): 324-339, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36541946

RESUMEN

There are increasing concerns on the rising cases of diabetes mellitus with type 2 diabetes (T2D) being of major interest as well as the cost of its treatment. Plant phenolic compounds are natural and potent antioxidants that have been widely reported for their antidiabetic activities properties, one of which is ferulic acid. The effect of ferulic acid (FA) on major diabetogenic activities and pancreatic architecture linked to T2D was investigated in T2D rats. T2D was induced in male Sprague-Dawley rats using the fructose-streptozotocin model. Diabetic rats were treated with FA at 150 or 300 mg/kg bodyweight (bw). Normal control consisted of rats administered with food and water, while diabetic control consisted of untreated diabetic rats. Metformin was used as the standard drug. The rats were humanely sacrificed after 5 weeks of treatment. Their blood, liver, and pancreas were collected for analysis. Total glycogen content and carbohydrate metabolic enzymes activities were analyzed in the liver, while the pancreas and serum from blood were analyzed for oxidative stress biomarkers, purinergic and cholinergic enzyme activities, and amylase and lipase activities. The pancreatic tissue was further subjected to microscopic and histological examinations. FA caused a significant (p < 0.05) decrease in blood glucose level, with concomitant increase in serum insulin level. Treatment with FA also led to elevated levels of GSH, HDL-c, SOD, and catalase activities, while concomitantly suppressing malondialdehyde, cholesterol, triglyceride, LDL-c, NO, ALT, AST, creatinine, urea, and uric acid levels, acetylcholinesterase, ATPase, ENTPDase, 5'-nucleotidase, lipase, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-biphosphatase activities. Histology analysis revealed an intact pancreatic morphology in FA-treated diabetic rats. While transmission electron microscopy (TEM) analysis revealed an intact pancreatic ultrastructure and increased number of insulin granules in ß-cells. Taken together, these results portray that the antidiabetic potentials of ferulic acid involves modulation of major diabetogenic activities and maintenance of the pancreatic ultrastructure architecture.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Ratas Sprague-Dawley , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Acetilcolinesterasa/uso terapéutico , Hipoglucemiantes/uso terapéutico , Páncreas , Insulina/metabolismo , Antioxidantes/farmacología , Homeostasis , Lipasa/metabolismo , Lipasa/farmacología , Lipasa/uso terapéutico , Glucosa/metabolismo , Glucemia , Extractos Vegetales/farmacología
2.
Arch Physiol Biochem ; : 1-14, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34752171

RESUMEN

OBJECTIVE: This study investigated the antidiabetic effect of vanillin using in vitro, in silico, and in vivo experimental models. METHODOLOGY: Type 2 diabetes (T2D) was induced in male Sprague-Dawley (SD) rats using fructose-streptozotocin (STZ) , then orally administered low (150 mg/kg bodyweight) or high (300 mg/kg bodyweight) dose of vanillin for 5 weeks intervention period. RESULTS: Vanillin suppressed the levels of blood glucose, serum cholesterol, triglyceride, low-density lipoprotein cholesterol (LDL-c), alanine transaminase (ALT), aspartate transaminase (AST), creatinine, urea, uric acid, when elevated serum insulin, HDL-cholesterol, and concomitantly improved pancreatic ß-cell function, glucose tolerance, and pancreatic morphology. It also elevated both serum and pancreatic tissue GSH level, SOD and catalase activities, and hepatic glycogen level, while depleting malondialdehyde level, α-amylase, lipase, acetylcholinesterase, ATPase, ENTPDase and 5'-nucleotidase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glycogen phosphorylase activities. CONCLUSIONS: The results indicate the potent antidiabetic effect of vanillin against T2D and its associated complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...