Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
BMC Psychiatry ; 23(1): 696, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749515

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS: Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS: We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS: The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , MicroARNs , Humanos , Niño , Femenino , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , MicroARNs/genética , Trastorno del Espectro Autista/psicología , Cohorte de Nacimiento , Biomarcadores , Agitación Psicomotora/complicaciones
2.
Epigenetics ; 18(1): 2193936, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36972203

RESUMEN

Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.


Asunto(s)
Cromatina , Metilación de ADN , Animales , Ratones , Cromatina/genética , Rayos gamma/efectos adversos , Ratones Endogámicos CBA , Radiación Ionizante
3.
Environ Mol Mutagen ; 64(2): 88-104, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36629742

RESUMEN

The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.


Asunto(s)
Espermatozoides , Testículo , Masculino , Animales , Ensayo Cometa , Daño del ADN , Células Germinativas , ADN
4.
Food Nutr Res ; 672023.
Artículo en Inglés | MEDLINE | ID: mdl-38187789

RESUMEN

Selenium is an essential trace element in humans, critical to the normal physiology in all animal species. The main form of selenium in food is selenomethionine, selenocysteine and a variety of organic compounds, while inorganic salts mainly occur in food supplements. In animals and humans, selenium occurs as selenocysteine in selenoproteins encoded by 25 genes (specific selenium pool). Several selenoproteins are part of the antioxidant enzyme system and serve as oxido-reductases and in thyroid hormone regulation. SelenoproteinP (SELENOP) transports selenium to peripheral tissues, is the main plasma selenoprotein, and has been used as biomarker of selenium status and intake. SELENOP in plasma represents a saturable pool of selenium and is maximised at a selenium concentration in plasma of about 110 µg/L or an intake of selenomethionine at about 1.2 µg/kg body weight in adults. In Finland, with an estimated selenium intake of 88 µg/day in men and 68 µg/day in women, the average selenium concentration in plasma is about 110 µg/L. Imported wheat from selenium rich areas is an important dietary source in Norway. Dietary intakes in the Nordic and Baltic area vary from 39 to 88 µg/day in men and 22 to 68 µg/day in women, the highest levels were from Finland. Most intervention trials on the effect of selenium supplementation on health outcomes have been carried out in 'selenium-replete'-populations and show no beneficial effect, which from a nutritional point of view would rather not be expected. Some intervention studies conducted in populations low in selenium have showed a beneficial effect. Observational studies suggest an inverse relationship between selenium status and risk of cardiovascular diseases (CVDs), cancer and all-cause mortality, and some other outcomes at low levels of intake (<55 µg/day) or in plasma or serum (<100 µg/L). However, a lack of quantitative data and inconsistencies between studies precludes these studies to be used to derive dietary reference values. At high intakes above 330 to 450 µg/day selenium may cause toxic effects affecting liver, peripheral nerves, skin, nails, and hair. An upper tolerable level (UL) of 255 µg selenium/day in adults was established by EFSA.

5.
Commun Biol ; 4(1): 1354, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857879

RESUMEN

Oxidative DNA damage in the brain has been implicated in neurodegeneration and cognitive decline. DNA glycosylases initiate base excision repair (BER), the main pathway for oxidative DNA base lesion repair. NEIL1 and NEIL3 DNA glycosylases affect cognition in mice, while the role of NEIL2 remains unclear. Here, we investigate the impact of NEIL2 and its potential overlap with NEIL1 on behavior in knockout mouse models. Neil1-/-Neil2-/- mice display hyperactivity, reduced anxiety and improved learning. Hippocampal oxidative DNA base lesion levels are comparable between genotypes and no mutator phenotype is found. Thus, impaired canonical repair is not likely to explain the altered behavior. Electrophysiology suggests reduced axonal activation in the hippocampal CA1 region in Neil1-/-Neil2-/- mice and lack of NEIL1 and NEIL2 causes dysregulation of genes in CA1 relevant for synaptic function. We postulate a cooperative function of NEIL1 and NEIL2 in genome regulation, beyond canonical BER, modulating behavior in mice.


Asunto(s)
Ansiedad/genética , ADN Glicosilasas/genética , Aprendizaje , Ratones/psicología , Animales , ADN Glicosilasas/metabolismo , Regulación de la Expresión Génica , Hipocampo/fisiología , Masculino , Ratones/genética , Ratones Noqueados , Estrés Oxidativo/fisiología
7.
PLoS One ; 16(8): e0256667, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34428250

RESUMEN

Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.


Asunto(s)
Rayos gamma , Radiación Ionizante , Transcripción Genética/efectos de los fármacos , Animales , Metilación de ADN/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Estrés Oxidativo/efectos de la radiación , Dosis de Radiación
8.
Radiat Environ Biophys ; 60(3): 397-410, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287697

RESUMEN

Reliable data on the effects of chronic prenatal exposure to low dose (LD) of ionizing radiation in humans are missing. There are concerns about adverse long-term effects that may persist throughout postnatal life of the offspring. Due to their slow cell cycle kinetics and life-long residence time in the organism, mesenchymal stem cells (MSCs) are more susceptible to low level genotoxic stress caused by extrinsic multiple LD events. The aim of this study was to investigate the effect of chronic, prenatal LD gamma irradiation to the biology of MSCs later in life. C3H mice were exposed in utero to chronic prenatal irradiation of 10 mGy/day over a period of 3 weeks. Two years later, MSCs were isolated from the bone marrow and analyzed in vitro for their radiosensitivity, for cellular senescence and for DNA double-strand break recognition after a second acute gamma-irradiation. In addition to these cellular assays, changes in protein expression were measured using HPLC-MS/MS and dysregulated molecular signaling pathways identified using bioinformatics. We observed radiation-induced proteomic changes in MSCs from the offspring of in utero irradiated mice (leading to ~ 9.4% of all detected proteins being either up- or downregulated) as compared to non-irradiated controls. The proteomic changes map to regulation pathways involved in the extracellular matrix, the response to oxidative stress, and the Wnt signaling pathway. In addition, chronic prenatal LD irradiation lead to an increased rate of in vitro radiation-induced senescence later in life and to an increased number of residual DNA double-strand breaks after 4 Gy irradiation, indicating a remarkable interaction of in vivo radiation in combination with a second acute dose of in vitro radiation. This study provides the first insight into a molecular mechanism of persistent MSC damage response by ionizing radiation exposure during prenatal time and will help to predict therapeutic safety and efficacy with respect to a clinical application of stem cells.


Asunto(s)
Rayos gamma/efectos adversos , Células Madre Mesenquimatosas/efectos de la radiación , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteoma/efectos de la radiación , Animales , Bioensayo , Células Cultivadas , Senescencia Celular/efectos de la radiación , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Reparación del ADN , Desarrollo Embrionario , Femenino , Masculino , Intercambio Materno-Fetal , Células Madre Mesenquimatosas/metabolismo , Ratones Mutantes , Embarazo , Vía de Señalización Wnt
9.
Arch Toxicol ; 95(8): 2825-2838, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34196753

RESUMEN

Mechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.


Asunto(s)
Ensayo Cometa/métodos , Daño del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/metabolismo , Mutágenos/toxicidad , Alquilación , Línea Celular , Humanos , Oxidación-Reducción , Sensibilidad y Especificidad
10.
Sci Total Environ ; 787: 147621, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000534

RESUMEN

BACKGROUND: Pregnant women and their fetuses are exposed to multiple toxic metals that together with variations in essential element levels may alter epigenetic regulation, such as DNA methylation. OBJECTIVES: The aim of the study was to investigate the associations between gestational levels of toxic metals and essential elements and mixtures thereof, with global DNA methylation levels in pregnant women and their newborn children. METHODS: Using 631 mother-child pairs from a prospective birth cohort (The Norwegian Mother, Father and Child Cohort Study), we measured maternal blood concentration (gestation week ~18) of five toxic metals and seven essential elements. We investigated associations as individual exposures and two-way interactions, using elastic net regression, and total mixture, using quantile g-computation, with blood levels of 5-methylcytocine (5mC) and 5-hydroxymethylcytosine (5hmC) in mothers during pregnancy and their newborn children (cord blood). Multiple testing was adjusted for using the Benjamini and Hochberg false discovery rate (FDR) approach. RESULTS: The most sensitive marker of DNA methylation appeared to be 5mC levels. In pregnant mothers, elastic net regression indicated associations between 5mC and selenium and lead (non-linear), while in newborns results indicated relationships between maternal selenium, cobalt (non-linear) and mercury and 5mC, as well as copper (non-linear) and 5hmC levels. Several possible two-way interactions were identified (e.g. arsenic and mercury, and selenium and maternal smoking in newborns). None of these findings met the FDR threshold for multiple testing. No net effect was observed in the joint (mixture) exposure-approach using quantile g-computation. CONCLUSION: We identified few associations between gestational levels of several toxic metals and essential elements and global DNA methylation in pregnant mothers and their newborn children. As DNA methylation dysregulation might be a key mechanism in disease development and thus of high importance for public health, our results should be considered as important candidates to investigate in future studies.


Asunto(s)
Metilación de ADN , Mujeres Embarazadas , Estudios de Cohortes , Epigénesis Genética , Femenino , Sangre Fetal , Humanos , Lactante , Recién Nacido , Exposición Materna/efectos adversos , Noruega , Embarazo , Estudios Prospectivos
11.
Artículo en Inglés | MEDLINE | ID: mdl-33198926

RESUMEN

Mitochondria are vulnerable to the effects of ionizing radiation; damage to mitochondrial DNA (mtDNA) may be more extensive and persistent than damage to nuclear DNA (nDNA). Variation in mtDNA copy number has been proposed as a marker for mitochondrial dysfunction in response to ionizing radiation. We have developed a precise and sensitive duplex droplet digital PCR (ddPCR) method for quantitation of the mtDNA/nDNA ratio in the model organism Caenorhabditis elegans. The effect on this ratio was investigated over a wide range of doses (0.03-72 Gy) of chronic gamma irradiation. Five mitochondrial targets and two nuclear reference genes were amplified pairwise in duplex PCR format (one mitochondrial and one nuclear target per PCR) by both ddPCR and quantitative PCR (qPCR). The results showed that ddPCR but not qPCR enabled detection of a significant increase in mtDNA copy number (1.6 ± 0.1-fold) for nematodes exposed to high doses (≥24 Gy). Thus, ddPCR provided higher precision and greater sensitivity than qPCR for detection of mtDNA copy number variation. The variation followed a Hill-type dose response with threshold 10.3 ± 1 Gy. This strongly suggests that chronic genotoxic stress affects mtDNA replication. The duplex ddPCR method is a novel, high-precision, sensitive tool for determination of mitochondrial DNA copy number variation and function in C. elegans.


Asunto(s)
Caenorhabditis elegans/efectos de la radiación , Variaciones en el Número de Copia de ADN/genética , Daño del ADN , ADN Mitocondrial/genética , Reacción en Cadena de la Polimerasa/métodos , Radiación Ionizante , Animales , Caenorhabditis elegans/genética , Replicación del ADN/genética , Replicación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Mitocondrias/genética , Mitocondrias/efectos de la radiación
12.
PLoS One ; 15(4): e0231040, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32240265

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have been linked to several diseases and to regulation of almost every biological process. This together with their stability while freely circulating in blood suggests that they could serve as minimal-invasive biomarkers for a wide range of diseases. Successful miRNA-based biomarker discovery in plasma is dependent on controlling sources of preanalytical variation, such as cellular contamination and hemolysis, as they can be major causes of altered miRNA expression levels. Analysis of plasma quality is therefore a crucial step for the best output when searching for novel miRNA biomarkers. METHODS: Plasma quality was assessed by three different methods in samples from mother-child duos (maternal and cord blood, N = 2x38), with collection and storage methods comparable to large cohort study biobanks. Total RNA was isolated and the expression profiles of 201 miRNAs was obtained by qPCR to identify differentially expressed miRNAs in cord and maternal plasma samples. RESULTS: All three methods for quality assurance indicate that the plasma samples used in this study are of high quality with very low levels of contamination, suitable for analysis of circulating miRNAs. We identified 19 significantly differentially expressed miRNAs between cord and maternal plasma samples (paired t-tests, FDR<0.05, and fold change>±1.5), and we observed low correlation of miRNA transcript levels between cord and maternal samples throughout our dataset. CONCLUSIONS: Our findings suggest that good quality plasma samples suitable for miRNA profiling can be achieved from samples collected and stored by large biobanks. Incorporation of extensive quality control measures, such as those established here, would be beneficial for future projects. The overall low correlation of miRNA expression between cord and maternal samples is an interesting observation, and promising for our future studies on identification of miRNA-based biomarkers in cord blood plasma, considering that these samples were collected at term and some exchange of blood components between cord and maternal blood frequently occur.


Asunto(s)
Biomarcadores/sangre , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Plasma/metabolismo , Bancos de Muestras Biológicas , Niño , Salud Infantil , Estudios de Cohortes , Femenino , Humanos , Masculino , Madres , Proyectos Piloto
14.
Int J Radiat Biol ; 94(4): 357-365, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29431562

RESUMEN

PURPOSE: To determine whether low dose/low dose rate radiation-induced genetic instability may result from radiation-induced inactivation of mechanisms induced by the ATM-dependent DNA damage response checkpoint. To this end, we analysed the faithfulness of T cell receptor (TR) gene rearrangement by V(D)J recombination in DNA from mice exposed to a single dose of X-ray or chronically exposed to low dose rate γ radiation. MATERIALS AND METHODS: Genomic DNA obtained from the blood or the thymus of wild type or Ogg1-deficient mice exposed to low (0.1) or intermediate/high (0.2-1 Gy) doses of radiation either by acute X-rays exposure or protracted exposure to low dose-rate γ-radiation was used to analyse by PCR the presence of illegitimate TR gene rearrangements. RESULTS: Radiation exposure does not increase the onset of TR gene trans-rearrangements in irradiated mice. In mice where it happens, trans-rearrangements remain sporadic events in developing T lymphocytes. CONCLUSION: We concluded that low dose/low dose rate ionizing radiation (IR) exposure does not lead to widespread inactivation of ATM-dependent mechanisms, and therefore that the mechanisms enforcing genetic stability are not impaired by IR in developing lymphocytes and lymphocyte progenitors, including BM-derived hematopoietic stem cells, in low dose/low dose rate exposed mice.


Asunto(s)
Reordenamiento Génico , Genes Codificadores de los Receptores de Linfocitos T/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , ADN Glicosilasas/fisiología , Inestabilidad Genómica , Linfocitos/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos CBA , Radiación Ionizante , Rayos X
15.
Mutagenesis ; 33(1): 25-30, 2018 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-29329446

RESUMEN

The alkaline comet assay, in vivo and in vitro, is currently used in several areas of research and in regulatory genotoxicity testing. Several efforts have been made in order to decrease the inter-experimental and inter-laboratory variability and increase the reliability of the assay. In this regard, lysis conditions are considered as one of the critical variables and need to be further studied. Here, we tested different times of lysis (from no lysis to 1 week) and two different lysis solutions in human lymphoblast (TK6) cells unexposed or exposed to X-rays. Similar % tail DNA values were obtained independently of the time of lysis employed for every X-ray dose tested and both lysis solutions. These results, taken together with our previous ones with methyl methanesulfonate and H2O2, which showed clear lysis-time dependence, support that the influence of the lysis time in the comet assay results depends on the type of lesion being detected; some DNA lesions may spontaneously give rise to apurinic or apyrimidinic (AP) sites during the lysis period, which can be converted into strand breaks detectable with the comet assay. Testing different times of lysis would be useful to increase the sensitivity of the comet assay and to ensure the detection of DNA lesions of an unknown compound, thereby providing some insight into the chemical nature of the lesions induced. However, the same lysis conditions (i.e. lysis time and lysis solution) should be used when comparing results between different experiments or laboratories.


Asunto(s)
Ensayo Cometa/métodos , Ensayo Cometa/normas , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Humanos , Peróxido de Hidrógeno/farmacología , Concentración de Iones de Hidrógeno , Estándares de Referencia , Reproducibilidad de los Resultados , Soluciones , Factores de Tiempo , Rayos X/efectos adversos
16.
Mutagenesis ; 33(1): 31-39, 2018 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-29240951

RESUMEN

The alkaline comet assay and a cell-free system were used to characterise DNA lesions induced by treatment with glycidamide (GA), a metabolite of the food contaminant acrylamide. DNA lesions induced by GA were sensitively detected when the formamidopyrimidine-DNA-glycosylase (Fpg) enzyme was included in the comet assay. We used LC-MS to characterise modified bases from GA-treated naked DNA with and without subsequent Fpg treatment. N7-GA-Guanine and N3-GA-Adenine aglycons were detected in the supernatant showing some depurination of adducted bases; treatment of naked DNA with Fpg revealed no further increase in the adduct yield nor occurrence of other adducted nucleobases. We treated human lymphocytes with GA and found large differences in DNA lesion levels detected with Fpg, depending on the duration and the pH of the lysis step. These lysis-dependent variations in GA-induced Fpg sensitive sites paralleled those observed after treatment of cells with methyl methane sulfonate (MMS). On the other hand, oxidative lesions (8-oxoGuanine) induced by a photoactive compound (Ro 12-9786) plus light, and also DNA strand breaks induced by X-rays, were detected largely independently of the lysis conditions. The results suggest that the GA-induced lesions are predominantly N7-GA-dG adducts slowly undergoing imidazole ring opening at pH 10 as in the standard lysis procedure; such structures are substrate for Fpg leading to strand breaks. The data suggest that the characteristic alkaline lysis dependence of some DNA lesions may be used to study specific types of DNA modifications. The comet assay is increasingly used in regulatory testing of chemicals; in this context, lysis-dependent variations represent a novel approach to obtain insight in the molecular nature of a genotoxic insult.


Asunto(s)
Ensayo Cometa , Daño del ADN/efectos de los fármacos , Compuestos Epoxi/toxicidad , Acrilamida/toxicidad , Animales , Bovinos , Cromatografía Liquida , Ensayo Cometa/métodos , ADN , Aductos de ADN , Reparación del ADN , ADN-Formamidopirimidina Glicosilasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Espectrometría de Masas , Mutágenos/toxicidad
17.
Neurotox Res ; 33(4): 824-836, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29101721

RESUMEN

Environmental stressors inducing oxidative stress such as ionizing radiation may influence cognitive function and neuronal plasticity. Recent studies have shown that transgenic mice deficient of DNA glycosylases display unexpected cognitive deficiencies related to changes in gene expression in the hippocampus. The main objectives of the present study were to determine learning and memory performance in C57BL/6NTac 8-oxoguanine DNA glycosylase 1 (Ogg1)+/- (heterozygote) and Ogg1+/+ (wild type, WT) mice, to study whether a single acute X-ray challenge (0.5 Gy, dose rate 0.457 Gy/min) influenced the cognitive performance in the Barnes maze, and if such differences were related to changes in gene expression levels in the hippocampus. We found that the Ogg1+/- mice exhibited poorer early-phase learning performance compared to the WT mice. Surprisingly, X-ray exposure of the Ogg1+/- animals improved their early-phase learning performance. No persistent effects on memory in the late-phase (6 weeks after irradiation) were observed. Our results further suggest that expression of 3 (Adrb1, Il1b, Prdx6) out of in total 35 genes investigated in the Ogg1+/- hippocampus is correlated to spatial learning in the Barnes maze.


Asunto(s)
Trastornos del Conocimiento/genética , Trastornos del Conocimiento/terapia , ADN Glicosilasas/deficiencia , Recuperación de la Función/efectos de la radiación , Terapia por Rayos X , Análisis de Varianza , Animales , ADN Glicosilasas/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Expresión Génica/genética , Expresión Génica/efectos de la radiación , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Peroxiredoxina VI/genética , Peroxiredoxina VI/metabolismo , ARN Mensajero/metabolismo , Tiempo de Reacción/efectos de la radiación , Recuperación de la Función/genética
18.
Toxicol Sci ; 162(1): 241-250, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29145655

RESUMEN

Preconceptional paternal exposures may affect offspring's health, which cannot be explained by mutations in germ cells, but by persistent changes in the regulation of gene expression. Therefore, we investigated whether pre-conceptional paternal exposure to benzo[a]pyrene (B[a]P) could alter the offspring's phenotype. Male C57BL/6 mice were exposed to B[a]P by gavage for 6 weeks, 3× per week, and were crossed with unexposed BALB-c females 6 weeks after the final exposure. The offspring was kept under normal feeding conditions and was sacrificed at 3 weeks of age. Analysis of the liver proteome by 2D-gel electrophoresis and mass spectrometry indicated that proteins involved in mitochondrial function were significantly downregulated in the offspring of exposed fathers. This down-regulation of mitochondrial proteins was paralleled by a reduction in mitochondrial DNA copy number and reduced activity of citrate synthase and ß-hydroxyacyl-CoA dehydrogenase, but in male offspring only. Surprisingly, analysis of hepatic mRNA expression revealed a male-specific up-regulation of the genes, whose proteins were downregulated, including Aldh2 and Ogg1. This discrepancy could be related to several selected microRNA (miRNA)'s that regulate the translation of these proteins; miRNA-122, miRNA-129-2-5p, and miRNA-1941 were upregulated in a gender-specific manner. Since mitochondria are thought to be a source of intracellular reactive oxygen species, we additionally assessed oxidatively-induced DNA damage. Both 8-hydroxy-deoxyguanosine and malondialdehyde-dG adduct levels were significantly reduced in male offspring of exposed fathers. In conclusion, we show that paternal exposure to B[a]P can regulate mitochondrial metabolism in offspring, which may have profound implications for our understanding of health and disease risk inherited from fathers.


Asunto(s)
Benzo(a)pireno/toxicidad , Contaminantes Ambientales/toxicidad , Hígado/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Exposición Paterna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Daño del ADN , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Estrés Oxidativo/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
19.
Environ Mol Mutagen ; 58(8): 560-569, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28856770

RESUMEN

Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc+/+ (wild type) and ApcMin/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h-1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min-1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The ApcMin/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Asunto(s)
Supervivencia Celular/efectos de la radiación , Aberraciones Cromosómicas/efectos de la radiación , Daño del ADN/efectos de la radiación , Neoplasias Inducidas por Radiación/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Humanos , Ratones , Pruebas de Micronúcleos , Mutación , Neoplasias Inducidas por Radiación/patología , Rayos X
20.
Environ Res ; 159: 564-578, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892785

RESUMEN

Gamma radiation represents a potential health risk to aquatic and terrestrial biota, due to its ability to ionize atoms and molecules in living tissues. The effects of exposure to 60Co gamma radiation in zebrafish (Danio rerio) were studied during two sensitive life stages: gametogenesis (F0: 53 and 8.7mGy/h for 27 days, total doses 31 and 5.2Gy) and embryogenesis (9.6mGy/h for 65h; total dose 0.62Gy). Progeny of F0 exposed to 53mGy/h showed 100% mortality occurring at the gastrulation stage corresponding to 8h post fertilization (hpf). Control and F0 fish exposed to 8.7mGy/h were used to create four lines in the first filial generation (F1): control, G line (irradiated during parental gametogenesis), E line (irradiated during embryogenesis) and GE line (irradiated during parental gametogenesis and embryogenesis). A statistically significant cumulative mortality of GE larva (9.3%) compared to controls was found at 96 hpf. E line embryos hatched significantly earlier compared to controls, G and GE (48-72 hpf). The deformity frequency was higher in G and GE, but not E line compared to controls at 72 hpf. One month after parental irradiation, the formation of reactive oxygen species (ROS) was increased in the G line, but did not significantly differ from controls one year after parental irradiation, while at the same time point it was significantly increased in the directly exposed E and GE lines from 60 to 120 hpf. Lipid peroxidation (LPO) was significantly increased in the G line one year after parental irradiation, while significant increase in DNA damage was detected in both the G and GE compared to controls and E line at 72 hpf. Radiation-induced bystander effects, triggered by culture media from tissue explants and observed as influx of Ca2+ ions through the cellular membrane of the reporter cells, were significantly increased in 72 hpf G line progeny one month after irradiation of the parents. One year after parental irradiation, the bystander effects were increased in the E line compared to controls, but not in progeny of irradiated parents (G and GE lines). Overall, this study showed that irradiation of parents can result in multigenerational oxidative stress and genomic instability in irradiated (GE) and non-irradiated (G) progeny of irradiated parents, including increases in ROS formation, LPO, DNA damage and bystander effects. The results therefore highlight the necessity for multi- and transgenerational studies to assess the environmental impact of gamma radiation.


Asunto(s)
Gametogénesis/efectos de la radiación , Rayos gamma/efectos adversos , Inestabilidad Genómica/efectos de la radiación , Reproducción/efectos de la radiación , Pez Cebra/fisiología , Animales , Embrión no Mamífero/efectos de la radiación , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...