Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cogn Neurosci ; 35(9): 1446-1462, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348130

RESUMEN

Systems consolidation theories posit that consolidation occurs primarily through a coordinated communication between hippocampus and neocortex [Moscovitch, M., & Gilboa, A. Systems consolidation, transformation and reorganization: Multiple trace theory, trace transformation theory and their competitors. PsyArXiv, 2021; Kumaran, D., Hassabis, D., & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends in Cognitive Sciences, 20, 512-534, 2016; McClelland, J. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. Recent sleep studies in rodents have shown that hippocampus and visual cortex replay the same information at temporal proximity ("co-replay"; Lansink, C. S., Goltstein, P. M., Lankelma, J. V., McNaughton, B. L., & Pennartz, C. M. A. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biology, 7, e1000173, 2009; Peyrache, A., Khamassi, M., Benchenane, K., Wiener, S. I., & Battaglia, F. P. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nature Neuroscience, 12, 919-926, 2009; Wierzynski, C. M., Lubenov, E. V., Gu, M., & Siapas, A. G. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron, 61, 587-596, 2009; Ji, D., & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100-107, 2007). We developed a novel repetition time (TR)-based co-reactivation analysis method to study hippocampal-cortical co-replays in humans using fMRI. Thirty-six young adults completed an image (face or scene) and location paired associate encoding task in the scanner, which were preceded and followed by resting state scans. We identified post-encoding rest TRs (± 1) that showed neural reactivation of each image-location trials in both hippocampus (HPC) and category-selective cortex (fusiform face area [FFA]). This allowed us to characterize temporally proximal coordinated reactivations ("co-reactivations") between HPC and FFA. Moreover, we found that increased HPC-FFA co-reactivations were associated with incorrectly recognized trials after a 1-week delay (p = .004). Finally, we found that these HPC-FFA co-reactivations were also associated with trials that were initially correctly recognized immediately after encoding but were later forgotten in 1-day (p = .043) and 1-week delay period (p = .031). We discuss these results from a trace transformation perspective [Sekeres, M. J., Winocur, G., & Moscovitch, M. The hippocampus and related neocortical structures in memory transformation. Neuroscience Letters, 680, 39-53, 2018; Winocur, G., & Moscovitch, M. Memory transformation and systems consolidation. Journal of the International Neuropsychological Society, 17, 766-780, 2011] and speculate that HPC-FFA co-reactivations may be integrating related events, at the expense of disrupting event-specific details, hence leading to forgetting.


Asunto(s)
Hipocampo , Vigilia , Adulto Joven , Humanos , Vigilia/fisiología , Hipocampo/fisiología , Aprendizaje , Sueño/fisiología , Corteza Prefrontal/fisiología
2.
Soc Cogn Affect Neurosci ; 14(11): 1243-1253, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31989169

RESUMEN

Representational similarity analysis (RSA) is a computational technique that uses pairwise comparisons of stimuli to reveal their representation in higher-order space. In the context of neuroimaging, mass-univariate analyses and other multivariate analyses can provide information on what and where information is represented but have limitations in their ability to address how information is represented. Social neuroscience is a field that can particularly benefit from incorporating RSA techniques to explore hypotheses regarding the representation of multidimensional data, how representations can predict behavior, how representations differ between groups and how multimodal data can be compared to inform theories. The goal of this paper is to provide a practical as well as theoretical guide to implementing RSA in social neuroscience studies.


Asunto(s)
Mapeo Encefálico/métodos , Conducta Social , Estadística como Asunto , Biología Computacional , Humanos , Imagen por Resonancia Magnética , Análisis Multivariante , Neurociencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA