Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Control Release ; 161(2): 446-60, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22286005

RESUMEN

Polymer conjugation is an efficient approach to improve the delivery of drugs and biological agents, both by protecting the body from the drug (by improving biodistribution and reducing toxicity) and by protecting the drug from the body (by preventing degradation and enhancing cellular uptake). This review discusses the journey that polymer therapeutics make through the body, following the ADME (absorption, distribution, metabolism, excretion) concept. The biological factors and delivery system parameters that influence each stage of the process will be described, with examples illustrating the different solutions to the challenges of drug delivery systems in vivo.


Asunto(s)
Portadores de Fármacos/farmacocinética , Polímeros/farmacocinética , Animales , Humanos
2.
J Am Chem Soc ; 133(28): 10960-5, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21631116

RESUMEN

The development of highly sensitive fluorescent probes in combination with innovative optical techniques is a promising strategy for intravital noninvasive quantitative imaging. Cyanine fluorochromes belong to a superfamily of dyes that have attracted substantial attention in probe design for molecular imaging. We have developed a novel paradigm to introduce a Turn-ON mechanism in cyanine molecules, based on a distinctive change in their π-electrons system. Our new cyanine fluorochrome is synthesized through a simple two-step procedure and has an unprecedented high fluorescence quantum yield of 16% and large extinction coefficient of 52,000 M(-1)cm(-1). The synthetic strategy allows one to prepare probes for various analytes by introducing a specific triggering group on the probe molecule. The probe was equipped with a corresponding trigger and demonstrated efficient imaging of endogenous hydrogen peroxide, produced in an acute lipopolysaccharide-induced inflammation model in mice. This approach provides, for the first time, an available methodology to prepare modular molecular Turn-ON probes that can release an active cyanine fluorophore upon reaction with specific analyte.


Asunto(s)
Carbocianinas/metabolismo , Colorantes Fluorescentes/metabolismo , Peróxido de Hidrógeno/metabolismo , Rayos Infrarrojos , Imagen Molecular/métodos , Fenómenos Ópticos , Animales , Ratones
3.
J Am Chem Soc ; 131(34): 12466-73, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19663438

RESUMEN

We studied the structural evolution during the formation of large-pore cubic Ia3d silica-based mesoporous materials, synthesized with Pluroinc P123 and butanol as structure directing agents. We used cryogenic high resolution scanning electron microscopy (cryo-HRSEM) and freeze-fracture-replication (FFR) transmission electron microscopy (TEM). Typically a silica precursor is added to an acid-catalyzed solution of Pluronic P123 and butanol. The latter serves as a cosolute, which can be added either at the beginning of the reaction, or after precipitation and the formation of a hexagonal phase. In this study we focused on the structural evolution from the hexagonal phase to the final cubic phase in the two different reactions. The same structural evolution with different kinetics was detected for both reactions. Cryo-HRSEM and FFR-TEM images revealed that from the hexagonal phase a perforated layer (PL) phase is formed, which later evolves into a bicontinuous structure. The final cubic phase forms within the layers, maintaining their orientation. We suggest a formation mechanism involving cylinder merging for the hexagonal to PL transition. Upon additional polymerization of the silica, the PL phase relaxes into the stable Ia3d cubic phase. Another minor mechanism detected involves the direct transition between the hexagonal to the final cubic phase through cylinder branching.

4.
Langmuir ; 23(10): 5657-64, 2007 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-17408294

RESUMEN

The stability and state of aggregation of aqueous fibrinogen (FB) and dipalmitoylphosphatidylcholine (DPPC) vesicles in water or buffer at 25 degrees C were studied with dynamic light scattering (DLS), UV-vis spectroturbidimetry (ST), and cryo-transmission electron microscopy (cryo-TEM). In water, when 1000 ppm (0.10 wt %) DPPC dispersions were prepared with a protocol including extensive sonication, they contained mostly vesicles and were quite clear, transparent, and stable for at least 30 days. FB mixtures with water (0.075 wt %) were quite unstable and biphasic. They formed large aggregates which eventually precipitated. The addition of DPPC vesicles into these unstable FB dispersions reversed FB aggregation and precipitation and produced stable translucent microdispersions. The inferred lipid/protein aggregates were limited in size, with average diameters ranging from 200 to 300 nm. In buffer, DPPC dispersions were also clear and quite stable, with average dispersed particles diameter of ca. 90 nm. FB dissolved in aqueous buffer and formed transparent and stable solutions. Adding salt to an aggregated FB dispersion in water reversed the aggregation. FB aggregated and redissolved in the presence of the citrate and after the citrate was removed. There was no effect of citrate (present in FB initially) in the FB aggregation or redissolution. FB molecules in buffer form dimers or higher aggregates. Their average aggregation number is 2, determined with Rayleigh scattering analysis of turbidity data. The average hydrodynamic diameter of FB solutions from DLS was 30 nm. Mixing a stable FB solution in buffer and a stable DPPC dispersion in buffer produced highly unstable mixtures, in which large aggregates precipitated. These results have implications in understanding the interactions of lipids and proteins in many biological applications and food processing applications.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Fibrinógeno/química , Membranas Artificiales , Nefelometría y Turbidimetría , Agua/química
5.
J Colloid Interface Sci ; 311(1): 217-27, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17359989

RESUMEN

The effect of sonication and freezing-thawing on the aggregate size and dynamic surface tension of aqueous dipalmitoylphosphatidylcholine (DPPC) dispersions was studied by cryogenic-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), UV-vis spectroturbidimetry, and surface tensiometry. When 1000 ppm (0.1 wt%) DPPC dispersions were prepared with a certain protocol, including extensive sonication, they contained mostly frozen vesicles and were quite clear, transparent, and stable for at least 30 days. The average dispersed vesicles diameter was 80 nm in water and 90 nm in standard phosphate saline buffer. After a freeze-thaw cycle, this dispersion became turbid, and precipitates of coagulated vesicles were observed with large particles of average size of 1.5x10(3) nm. The vesicle coagulation is due to the local salt concentration increase during the freezing of water. This dispersion has much higher equilibrium and dynamic surface tension than those before freezing. When this freeze-thawed dispersion was subjected to a resonication at 55 degrees C, smaller vesicles with sizes of ca. 70 nm were produced, and a lower surface tension behavior was restored as before freezing. Similar behavior was observed at 30 ppm DPPC. These results indicate that the freeze-thaw cycle causes substantial aggregation and precipitation of the vesicles. These results have implications for designing efficient protocols of lipid dispersion preparation and lung surfactant replacement formulations in treating respiratory disease and for effective administration.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Congelación , Luz , Microscopía Electrónica de Transmisión/métodos , Tamaño de la Partícula , Dispersión de Radiación , Sensibilidad y Especificidad , Sonicación , Espectrofotometría Ultravioleta/métodos , Tensión Superficial , Factores de Tiempo , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...