Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Cardiovasc Med ; 11: 1397079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863901

RESUMEN

Background: Ischemic mitral regurgitation (IMR) imposes volume overload on the left ventricle (LV), accelerating adverse LV remodeling. In this study, we sought to investigate the impact of volume overload due to IMR on regional myocardial contractile mechanics. Methods: Ten Yorkshire swine were induced with myocardial infarction (MI) by occluding the left circumflex coronary artery (LCx). Cardiac MRI was performed at baseline (BL) and 2.5 months (2.5M) post-MI. IMR was quantified with epicardial echocardiography 3 months post-MI. The animals were then assigned to 2 groups: no/mild MR (nmMR, n = 4) and moderate/severe MR (msMR, n = 6). MRI images were analyzed to assess infarction size, end-diastolic and end-systolic volume (EDV and ESV, respectively), ejection fraction (EF), longitudinal strain (LS), circumferential strain (CS), and systolic dyssynchrony index (SDI). The myocardial region was divided into infarction, border, and remote zones based on the LCx-supplied region. Results: There was no difference in the infarction size. Group-wise comparison of LS and CS between BL and 2.5M demonstrated that LS and CS in the infarction zone and the border zone decreased at 2.5M in both groups. However, LS and CS in the remote zone were elevated only in the msMR group (LS: -9.81 ± 3.96 vs. -12.58 ± 5.07, p < 0.01; CS; -12.78 ± 3.81 vs. -16.09 ± 3.33, p < 0.01) at 2.5M compared to BL. The SDI of CS was significantly elevated in the msMR group (0.1255 vs. 0.0974, p = 0.015) at 2.5M compared to BL. Conclusions: Elevated LS and CS in the remote zone were observed in moderate/severe MR and ventricular dyssynchrony. These elevated cardiac strains, coupled with ventricular dyssynchrony, may contribute to the progression of MR, thereby accelerating heart failure.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37615887

RESUMEN

Several interventional therapies are in development to treat functional tricuspid regurgitation. Most have failed to achieve adequate efficacy, as animal models of this lesion are lacking. We developed a new image-guided technique in swine, by tethering the tricuspid valve chordae using echo-guided chordal encircling snares. Five swine underwent baseline echocardiographic assessment of tricuspid valve function, followed by echo-guided placement of snares that encircle the chordae inserting into the anterior and posterior tricuspid valve leaflets. Tethering these snares and stabilizing them on the right ventricle caused the regurgitant fraction to increase from 8.48±5.38% to 48.76±12.5%, and the valve tenting area to increase from 60.26±52.19 to 160.9±86.92 mm2. Image-guided chordal encircling snares could reproducibly induce clinically significant levels of functional tricuspid regurgitation and create a valve geometry like that seen in patients, providing a new animal model for use to study novel interventional devices.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37597738

RESUMEN

OBJECTIVE: A significant proportion of patients with advanced heart failure present with dilated left ventricles and functional mitral regurgitation. These patients currently have limited treatment options. The MitraClip device (Abbott) has benefited only patients with smaller left ventricles (end-diastolic dimension <70 mm), whereas those with larger left ventricles did not benefit. A possible explanation is correcting functional mitral regurgitation alone may not adequately reduce the wall stresses of a dilated left ventricle. We have developed a beating-heart device that not only approximates the papillary muscles to reduce functional mitral regurgitation but also modifies the left ventricle size and shape to reduce wall stress. METHODS: Yorkshire swine (n = 16) had a myocardial infarction induced by permanent occlusion of the left circumflex with intracoronary ethanol. Three months later, the animals developed heart failure and moderate or greater functional mitral regurgitation. Through a transapical approach, the new device was implanted under echocardiography guidance to reshape the left ventricle and correct functional mitral regurgitation. The acute impact of this approach on the mitral valve and left ventricle was assessed with echocardiography and invasive hemodynamics. RESULTS: After reshaping, echocardiography showed a decrease in end-diastolic volume by 36.3 ± 30.5 mL (P < .001), a decrease in sphericity index by 0.143 ± 0.087 (P < .001), and an increase in ejection fraction of 5.90% ± 6.38% (P < .01). Mitral valve tenting area was reduced by 39.29 ± 33.66 mm2 (P < .001), coaptation length was increased by 2.12 ± 1.02 mm (P < .001), and posterior excursion angle was improved by 9.07° ± 9.14° (P < .01), resulting in functional mitral regurgitation reduction. CONCLUSIONS: Correction of functional mitral regurgitation with favorable changes in mitral valve geometry and reduction in left ventricle geometry is possible with the proposed device.

4.
JTCVS Open ; 16: 698-707, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204723

RESUMEN

Objective: The in utero no flow/no grow hypothesis postulates that reduced inflow of blood into the left ventricle due to a stenotic mitral valve could lead to ventricular hypoplasia and hypoplastic left heart syndrome. This has been demonstrated in chick embryos, but less so in large animals. We investigated the impact of mitral obstruction on left and right ventricular growth in fetal lambs. Methods: Twelve pregnant ewes, most bearing twins, were instrumented at 119 ± 1 days gestational age. Carotid artery and jugular vein catheters, an ascending aorta flow probe, and a left atrial deflated balloon catheter were implanted into 1 fetus (left atrial balloon group), and the twin remained an uninstrumented control. The balloon was inflated gradually over 8 days until net antegrade aortic flow was eliminated. Fetal transesophageal echocardiography was performed at the time of surgery and just before termination in both groups. Results: Terminal fetal body weights were comparable between groups. Terminal heart/body weight ratio was higher in left atrial balloon group fetuses (6.9 ± 0.8 g/kg) compared with controls (5.9 ± 0.6 g, P = .0126). The left ventricular/right ventricular weight ratio was 24% (P = .0077) lower in left atrial balloon group fetuses than in controls. Left ventricular/heart weight (0.24 ± 0.04 g/g vs 0.30 ± 0.04 g/g, P = .0009), left ventricular end-diastolic volume (2.3 ± 0.7 mL vs 7.1 ± 0.8 mL; P = .0012), and left ventricular end-systolic volume (1.01 mL [0.95-1.95 mL] vs 3.38 mL [3.28-3.57 mL], P = .0042) were lower in left atrial balloon group fetuses compared with controls. Right ventricular weight (g/kg), right ventricular end-diastolic volume, and right ventricular end-systolic volume were similar between groups. Conclusions: In this late-gestation fetal lamb model, in utero obstruction of mitral inflow slowed left ventricular growth and caused right ventricular remodeling.

5.
Mater Today Bio ; 17: 100451, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36444341

RESUMEN

Cardiovascular surgery involves reconstruction of tissues that are under cyclical mechanical loading, and in constant contact with pulsatile blood flow. Durable biomaterials for such tissue reconstruction are scarce, as they need to be mechanically strong, hemocompatible, and resist structural deterioration from calcification. While homografts are ideal, they are scarce; xenografts are immunogenic and rendered inactive from glutaraldehyde fixation, causing them to calficy and structurally deteriorate over time; decellularized xenografts are devoid of cells, mechanically weak; and synthetic polymeric scaffolds are thrombogenic or too dense to enable host cell infiltration. In this work, we report the in vivo feasibility of a new polymer-decellularized matrix composite material (decellularized bovine pericardium-polycaprolactone: chitosan) fabricated by electrospinning, which is designed to be mechanically strong and achieve programmed host cell honing to integrate into the host. In a rodent and sheep model, this new material was found to be hemocompatible, and enabled host cell infiltration into the polymer and the decellularized matrix core underlying the polymer. Presence of M2 macrophages and several vascular cell types, with matrix remodeling in the vicinity of the cells was observed in the explanted tissues. In summary, the proposed composite material is a novel approach to create in-situ host integrating tissue substitutes, with better non-thrombogenicity, reduced infections and endocarditis, and potentially the ability to grow with the patient and remodeling into a native tissue structure.

6.
J Biomed Opt ; 27(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102728

RESUMEN

SIGNIFICANCE: Intravascular photoacoustic (IVPA) imaging can identify native lipid in atherosclerotic plaques in vivo. However, the large number of laser pulses required to produce 3D images is a safety concern that has not been fully addressed. AIM: We aim to evaluate if irradiation at wavelengths and dosages relevant to IVPA imaging causes target vessel damage. APPROACH: We irradiate the carotid artery of swine at one of several energy dosages using radiation at 1064 or 1720 nm and use histological evaluation by a pathologist to identify dose-dependent damage. RESULTS: Media necrosis was the only dose-dependent form of injury. Damage was present at a cumulative fluence of 50 J / cm2 when using 1720 nm light. Damage was more equivocally identified at 700 J / cm2 using 1064 nm. CONCLUSIONS: In prior work, IVPA imaging of native lipid in swine has been successfully conducted below the damage thresholds identified. This indicates that it will be possible to use IVPA imaging in a clinical setting without damaging vessel tissue. Future work should determine if irradiation causes an increase in blood thrombogenicity and confirm whether damaged tissue will heal over longer time points.


Asunto(s)
Placa Aterosclerótica , Animales , Diagnóstico por Imagen , Rayos Láser , Porcinos
7.
J Thorac Cardiovasc Surg ; 164(1): 76-87.e1, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33041065

RESUMEN

OBJECTIVE: Surgical annuloplasty for functional tricuspid regurgitation (FTR) is on the rise and can be performed in several ways with varied outcomes. In this study, we sought to compare the hemodynamic outcomes of tricuspid annuloplasty performed with a commercially available annuloplasty ring (tricuspid valve annuloplasty [TVA]) compared with focal suture annuloplasty (Hetzer) in an experimental FTR model. METHODS: An ex vivo FTR model was developed by inducing right ventricular dilatation by acute afterload elevation, causing severe tricuspid valve tethering and annular dilatation, leading to regurgitation. Ten porcine hearts in which FTR was induced underwent TVA with a 26-mm Edwards MC3 ring and Hetzer annuloplasty with a pledgeted suture cinching the anteroposterior and septal annulus. FTR was measured before after each repair, and tenting geometry, valve kinematics, and subvalvular geometry were measured with echocardiography. RESULTS: At baseline, none of the hearts had FTR, but upon afterload elevation an FTR volume of 17.7 ± 9.2 mL (26.38 ± 17.47% regurgitant fraction) was measured (P < .0001). TVA reduced regurgitation by 50% and Hetzer annuloplasty by 56% , respectively, but both left persistent FTR. Anteroseptal tenting area was 279.0 ± 158.9 mm2 before repair and decreased significantly to 147.2 ± 134.8 mm2 (P = .0195) with Hetzer but not with TVA. Posteroseptal tenting area was 425.1 ± 169.2 mm2 before repair and was significantly reduced by both techniques (TVA: 200.3 ± 102.9 mm2 [P = .0012]; Hetzer: 237.6 ± 127.6 mm2 [P = .0270]). CONCLUSIONS: Tricuspid annuloplasty with a ring or a focal suture can reduce FTR but not eliminate it. Annular approaches did not relieve tricuspid valve tethering and reduced leaflet mobility persisted. Either subannular repairs or judicious use of valve replacement may be necessary.


Asunto(s)
Anuloplastia de la Válvula Cardíaca , Insuficiencia de la Válvula Tricúspide , Animales , Anuloplastia de la Válvula Cardíaca/efectos adversos , Hemodinámica , Humanos , Suturas/efectos adversos , Porcinos , Resultado del Tratamiento , Válvula Tricúspide/diagnóstico por imagen , Válvula Tricúspide/cirugía , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Insuficiencia de la Válvula Tricúspide/etiología , Insuficiencia de la Válvula Tricúspide/cirugía
8.
J Thorac Cardiovasc Surg ; 163(5): e343-e355, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33046233

RESUMEN

OBJECTIVE: The left ventricle remodels from an ellipsoidal/conical shape to a spherical shape after a myocardial infarction. The spherical ventricle is inefficient as a pumping chamber, has higher wall stresses, and can lead to congestive heart failure. We sought to investigate if restoring physiological ventricular shape with a beating heart implant improves pump function. METHODS: Rats were induced with a myocardial infarction, developing left ventricular dilatation and dysfunction, and becoming spherical over 3 weeks. Thereafter, they were randomized to undergo left ventricular reshaping with a beating heart implant (n = 19) or continue follow-up without an implant (n = 19). Biweekly echocardiography was performed until 12 weeks, with half the rats euthanized at 6 weeks and remaining at 12 weeks. At termination, invasive hemodynamic parameters and histopathology were performed. RESULTS: At 3 weeks after the infarction, rats had a 22% fall in ejection fraction, 31% rise in end diastolic volume, and 23% rise in sphericity. Transventricular implant reshaping reduced the volume by 12.6% and sphericity by 21%, restoring physiologic ventricular shape and wall stress. Over the 12-week follow-up, pump function improved significantly with better ventricular-vascular coupling in the reshaped hearts. In this group, cardiomyocyte cross-section area was higher and the cells were less elongated. CONCLUSIONS: Reshaping a postinfarction, failing left ventricle to restore its physiological conical shape significantly improves long-term pump function.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Ratas , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/cirugía , Miocitos Cardíacos , Función Ventricular Izquierda , Remodelación Ventricular
9.
J Thorac Cardiovasc Surg ; 164(6): e333-e347, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34903384

RESUMEN

BACKGROUND: Patients who survive a myocardial infarction have progressive cardiac dysfunction and ventricular remodeling. Mitral regurgitation is often diagnosed in these patients, and is a risk factor that portends poor prognosis. Whether such postinfarction mitral regurgitation magnifies adverse left ventricular remodeling is unclear, which was studied in an animal model. METHODS: Forty-one adult rats were induced with myocardial infarction using left coronary artery ligation and assigned to 3 groups: group 1, myocardial infarction only; group 2, myocardial infarction with severe mitral regurgitation introduced after 4 weeks; and group 3, myocardial infarction with severe mitral regurgitation introduced after 10 weeks. Valve regurgitation was introduced by advancing a transapical ultrasound-guided needle into the mitral valve anterior leaflet. Animals were survived to 20 weeks from the index procedure, with biweekly cardiac ultrasound, and invasive hemodynamics and histology at termination. RESULTS: At 20 weeks, end diastolic volume was largest in the groups with mitral regurgitation, compared with the group without the valve lesion (group 1, 760.9 ± 124.6 µL; group 2, 958.0 ± 115.1 µL; group 3, 968.3 ± 214.9 µL). Similarly, end systolic volume was larger in groups with regurgitation (group 1, 431.2 ± 152.6 µL; group 2, 533.2 ± 130.8 µL; group 3, 533.1 ± 177.5 µL). In the infarction-only group, left ventricular remodeling was maximal until 6 weeks and plateaued thereafter. In groups with mitral regurgitation, left ventricular remodeling was significantly elevated at the onset of regurgitation and persisted. CONCLUSIONS: Mitral regurgitation is a potent driver of adverse cardiac remodeling after a myocardial infarction, irrespective of the timing of its onset.


Asunto(s)
Cardiomiopatías , Insuficiencia de la Válvula Mitral , Infarto del Miocardio , Isquemia Miocárdica , Ratas , Animales , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/etiología , Insuficiencia de la Válvula Mitral/patología , Remodelación Ventricular , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/diagnóstico por imagen , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Modelos Animales de Enfermedad , Cardiomiopatías/complicaciones
10.
J Cardiovasc Transl Res ; 15(3): 653-665, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34618333

RESUMEN

Development of transcatheter mitral valve interventions has ushered a significant need for large animal models of secondary mitral regurgitation. Though currently used heart failure models that chronically develop secondary mitral regurgitation are viable, the severity is lower than patients, the incubation time is long, and mortality is high. We sought to develop a swine model of acute secondary mitral regurgitation that uses image-guided placement of snares around the mitral chordae. Twenty-seven adult swine (n = 27) were assigned to secondary mitral regurgitation induced by valve tethering with image-guided chordal encircling snares (group 1, n = 7, tether MR (tMR)); secondary mitral regurgitation by percutaneous posterolateral myocardial infarction causing ventricular dysfunction and regurgitation (group 2, n = 6, functional MR (fMR)); and control animals (group 3, n = 14). Regurgitant fraction in tMR was 42.1 ± 14.2%, in fMR was 22 ± 9.6%, and in controls was 5.3 ± 3.8%. Mitral tenting height was 9.6 ± 1.3 mm in tMR, 10.1 ± 1.5 mm in fMR, and 5.8 ± 1.2 mm in controls. Chordal encircling tethers reproducibly induce clinically relevant levels of secondary mitral regurgitation, providing a new animal model for use in translational research.


Asunto(s)
Insuficiencia de la Válvula Mitral , Animales , Cuerdas Tendinosas/diagnóstico por imagen , Cuerdas Tendinosas/cirugía , Humanos , Válvula Mitral/diagnóstico por imagen , Válvula Mitral/cirugía , Insuficiencia de la Válvula Mitral/diagnóstico por imagen , Insuficiencia de la Válvula Mitral/etiología , Insuficiencia de la Válvula Mitral/cirugía , Modelos Animales , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA