Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 806(Pt 4): 151221, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717991

RESUMEN

Tropical agriculture produces large amounts of lignocellulosic residues that can potentially be used as a natural source of value-added products. The complexity of lignocellulose makes industrial-scale processing difficult. New processing techniques must be developed to improve the yield and avoid this valuable resource going to waste. Hemicelluloses comprise a variety of polysaccharides with different backbone compositions and decorations (such as methylations and acetylations), and form part of an intricate framework that confers structural stability to the plant cell wall. Organisms that are able to degrade these biopolymers include earthworms (Eisenia fetida), which can rapidly decompose a wide variety of lignocellulosic substrates. This ability probably derives from enzymes and symbiotic microorganisms in the earthworm gut. In this work, two substrates with similar C/N ratios but different hemicellulose content were selected. Palm fibre and coffee husk have relatively high (28%) and low (5%) hemicellulose contents, respectively. A vermicomposting mixture was prepared for the earthworms to feed on by mixing a hemicellulose substrate with organic market waste. Xylanase activity was determined in earthworm gut and used as a selection criterion for the isolation of hemicellulose-degrading bacteria. Xylanase activity was similar for both substrates, even though their physicochemical properties principally pH and electrical conductivity, as shown by the MANOVA analysis) were different for the total duration of the experiment (120 days). Xylanolytic strains isolated from earthworm gut were identified by sequence analysis of the 16S rRNA gene. Our results indicate that the four Actinobacteria, two Proteobacteria, and one Firmicutes isolated are active participants of the xylanolytic degradation by microbiota in the intestine of E. fetida. Most bacteria were more active at pH 7 and 28 °C, and those with higher activities are reported as being facultatively anaerobic, coinciding with the microenvironment reported for the earthworm gut. Each strain had a different degradative capacity.


Asunto(s)
Oligoquetos , Animales , Bacterias/genética , Humanos , Intestinos , ARN Ribosómico 16S , Suelo
2.
Environ Sci Pollut Res Int ; 25(2): 1576-1586, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29098584

RESUMEN

Epigeic worms modify microbial communities through their digestive processes, thereby influencing the decomposition of organic matter in vermicomposting systems. Nevertheless, the enzyme dynamics within the gut of tropically adapted earthworms is unknown, and the enzymes involved have not been simultaneously studied. The activities of 19 hydrolytic enzymes within three different sections of the intestine of Eisenia fetida were determined over a fasting period and at 24 h and 30, 60, and 90 days of vermicomposting, and data were evaluated by multivariate analyses. There were found positive correlations between the maximal activity of glycosyl hydrolases and one esterase with the anterior intestine (coincident with the reduction of hemicellulose in the substrate) and the activity of the protease α-chymotrypsin with posterior intestine. The results suggest that activities of enzymes change in a coordinated manner within each gut section, probably influenced by selective microbial enzyme enrichment and by the availability of nutrients throughout vermicomposting.


Asunto(s)
Café , Compostaje , Oligoquetos/enzimología , Clima Tropical , Animales , Biodegradación Ambiental , Café/metabolismo , Intestinos/anatomía & histología , Intestinos/enzimología , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA