Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143156, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178968

RESUMEN

Changes in natural conditions and anthropogenic pollutants, alone or in combination, pose a significant challenge to coastal bivalve populations. The susceptibility of economically important bivalves to potential stressors in their farming environment has not been sufficiently investigated, despite the increase in anthropogenic pressure along the coast and the remarkable warming of seawater in recent years. Thus, the aim of this study was to evaluate the performance of mussel (Mytilus galloprovincialis) from two important farming sites in the eastern Adriatic, namely Mali Ston Bay (MSB) and Lim Bay (LB), in relation to variations of seawater parameters, reproductive cycle dynamics and tissue content of potentially harmful pollutants. The complex seasonal and site-specific patterns of chemical pollutants were determined, with tissue levels of metals, As, PAHs and PCBs largely comparable to those previously reported for the Mediterranean region. Concentrations of organochlorinated pesticides were below the level of detection. Significantly higher Cd, As and Hg concentrations were detected in the tissues of the MSB mussels. The reproductive cycle was clearly associated with the bioaccumulation of pollutants. All biochemical response parameters varied to some extent across seasons and/or between farming sites. A very pronounced seasonality was recorded for acetylcholinesterase and glutathione S-transferase activity at both sites. Metallothionein concentration and superoxide dismutase activity were generally steady throughout the study period. The most striking difference between the two sites was recorded for lipid peroxides concentrations which were predominantly significantly higher in the MSB mussels, indicating expressed pro-oxidant conditions at this site. In particular, significant correlations were found between lipid peroxides and the potentially toxic metals (Cd, As, Hg) accumulated in the mussel tissue. Data reported here are valuable as baseline information for further studies related to stress in farmed bivalves caused by oscillations of environmental factors and increasing anthropogenic pressure along the coastline.

2.
Mar Pollut Bull ; 187: 114592, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36657339

RESUMEN

Mediterranean Sea is the sixth largest area of marine litter accumulation in the world, and plastic pollution is a growing problem in its Adriatic sub-basin. The aim of the present study was to evaluate the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers in the south-eastern Adriatic Sea in comparison with microbiota in seawater and sediment. Plastic litter in the sea contains an autochthonous microbiota that is different from that of the surrounding seawater and sediment. Vibrio abundance was higher on plastic litter than in surrounding seawater and sediment. All isolated Vibrio showing resistance to ampicillin and vancomycin, while resistance to other antibiotics depended on the isolated species. Overall, this study provides for the first time information on the cultivable microbiota associated with plastic litter collected by commercial fishing trawlers and provides a data base for further studies.


Asunto(s)
Monitoreo del Ambiente , Caza , Plásticos , Contaminación Ambiental , Mar Mediterráneo , Farmacorresistencia Microbiana , Residuos/análisis
3.
J Invertebr Pathol ; 169: 107274, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682798

RESUMEN

The pathogenic oomycete Aphanomyces astaci, transmitted mainly by invasive North American crayfish, causes the crayfish plague, a disease mostly lethal for native European crayfish. Due to its decimating effects on native crayfish populations in the last century, A. astaci has been listed among the 100 worst invasive species. Importantly, detecting the pathogen in endangered native crayfish populations before a disease outbreak would provide a starting point in the development of effective control measures. However, current A. astaci-detection protocols either rely on degradation-prone eDNA isolated from large volumes of water or, if focused on individual animals, include killing the crayfish. We developed a non-destructive method that detects A. astaci DNA in the microbial biofilm associated with the cuticle of individual crayfish, without the need for destructive sampling. Efficiency of the new method was confirmed by PCR and qPCR and the obtained results were congruent with the traditional destructive sampling method. Additionally, we demonstrated the applicability of the method for A. astaci monitoring in natural populations. We propose that the new method should be used in future monitoring of A. astaci presence in endangered European native crayfish individuals as an alternative to eDNA-based monitoring.


Asunto(s)
Aphanomyces/aislamiento & purificación , Astacoidea/parasitología , Conservación de los Recursos Naturales/métodos , Interacciones Huésped-Parásitos , Parasitología/métodos , Animales , ADN Protozoario/análisis , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...