Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuron ; 110(22): 3743-3759.e6, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36087584

RESUMEN

Presynaptic homeostatic plasticity (PHP) adaptively regulates synaptic transmission in health and disease. Despite identification of numerous genes that are essential for PHP, we lack a dynamic framework to explain how PHP is initiated, potentiated, and limited to achieve precise control of vesicle fusion. Here, utilizing both mice and Drosophila, we demonstrate that PHP progresses through the assembly and physical expansion of presynaptic signaling foci where activated integrins biochemically converge with trans-synaptic Semaphorin2b/PlexinB signaling. Each component of the identified signaling complexes, including alpha/beta-integrin, Semaphorin2b, PlexinB, talin, and focal adhesion kinase (FAK), and their biochemical interactions, are essential for PHP. Complex integrity requires the Sema2b ligand and complex expansion includes a ∼2.5-fold expansion of active-zone associated puncta composed of the actin-binding protein talin. Finally, complex pre-expansion is sufficient to accelerate the rate and extent of PHP. A working model is proposed incorporating signal convergence with dynamic molecular assemblies that instruct PHP.


Asunto(s)
Proteínas de Drosophila , Animales , Ratones , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Terminales Presinápticos/metabolismo , Talina/metabolismo , Plasticidad Neuronal/fisiología , Drosophila/metabolismo
2.
Nat Commun ; 12(1): 513, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479240

RESUMEN

Missense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson's disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal-lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.


Asunto(s)
Longevidad/genética , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas de Unión a Fosfato/genética , Proteína que Contiene Valosina/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Osteítis Deformante/genética , Osteítis Deformante/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Unión Proteica , Proteína que Contiene Valosina/metabolismo
3.
Neuron ; 107(1): 95-111.e6, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380032

RESUMEN

Progressive synapse loss is an inevitable and insidious part of age-related neurodegenerative disease. Typically, synapse loss precedes symptoms of cognitive and motor decline. This suggests the existence of compensatory mechanisms that can temporarily counteract the effects of ongoing neurodegeneration. Here, we demonstrate that presynaptic homeostatic plasticity (PHP) is induced at degenerating neuromuscular junctions, mediated by an evolutionarily conserved activity of presynaptic ENaC channels in both Drosophila and mouse. To assess the consequence of eliminating PHP in a mouse model of ALS-like degeneration, we generated a motoneuron-specific deletion of Scnn1a, encoding the ENaC channel alpha subunit. We show that Scnn1a is essential for PHP without adversely affecting baseline neural function or lifespan. However, Scnn1a knockout in a degeneration-causing mutant background accelerated motoneuron loss and disease progression to twice the rate observed in littermate controls with intact PHP. We propose a model of neuroprotective homeostatic plasticity, extending organismal lifespan and health span.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Neuroprotección/fisiología , Terminales Presinápticos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Drosophila melanogaster , Ratones , Ratones Noqueados , Unión Neuromuscular/metabolismo
4.
Nature ; 550(7674): 109-113, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953869

RESUMEN

Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostasis , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Transducción de Señal , Actinas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Masculino , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Receptores Presinapticos/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismo
5.
Cell Rep ; 20(8): 1855-1866, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834749

RESUMEN

The homeostatic control of presynaptic neurotransmitter release stabilizes information transfer at synaptic connections in the nervous system of organisms ranging from insect to human. Presynaptic homeostatic signaling centers upon the regulated membrane insertion of an amiloride-sensitive degenerin/epithelial sodium (Deg/ENaC) channel. Elucidating the subunit composition of this channel is an essential step toward defining the underlying mechanisms of presynaptic homeostatic plasticity (PHP). Here, we demonstrate that the ppk1 gene encodes an essential subunit of this Deg/ENaC channel, functioning in motoneurons for the rapid induction and maintenance of PHP. We provide genetic and biochemical evidence that PPK1 functions together with PPK11 and PPK16 as a presynaptic, hetero-trimeric Deg/ENaC channel. Finally, we highlight tight control of Deg/ENaC channel expression and activity, showing increased PPK1 protein expression during PHP and evidence for signaling mechanisms that fine tune the level of Deg/ENaC activity during PHP.


Asunto(s)
Aminobutiratos/metabolismo , Proteínas de Drosophila/metabolismo , Canales Epiteliales de Sodio/metabolismo , Animales , Drosophila melanogaster , Femenino , Homeostasis , Masculino , Transducción de Señal , Canales de Sodio/metabolismo
6.
J Neurosci ; 34(16): 5416-30, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24741033

RESUMEN

Netrin and its receptor, Frazzled, dictate the strength of synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating gap junction localization in the presynaptic terminal. In Netrin mutant animals, the synaptic coupling between a giant interneuron and the "jump" motor neuron was weakened and dye coupling between these two neurons was severely compromised or absent. In cases in which Netrin mutants displayed apparently normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses and dye coupling between the giant fiber (GF) and the motor neuron was reduced or eliminated, suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap junctions with antibodies to Shaking-B (ShakB) Innexin, they were significantly decreased or absent in the presynaptic terminal of the mutant GF. Frazzled loss of function mutants exhibited similar defects in synaptic transmission, dye coupling, and gap junction localization. These data are the first to show that Netrin and Frazzled regulate the placement of gap junctions presynaptically at a synapse.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Unión Neuromuscular/citología , Terminales Presinápticos/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Animales Modificados Genéticamente , Dendritas/genética , Dendritas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Potenciales Postsinápticos Excitadores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Modelos Biológicos , Neuronas Motoras/fisiología , Mutación/genética , Factores de Crecimiento Nervioso/genética , Red Nerviosa/fisiología , Receptores de Netrina , Netrina-1 , Unión Neuromuscular/fisiología , Pupa , Tiempo de Reacción/genética , Receptores de Superficie Celular/genética , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA