Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 8(16): 8505-11, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-27064427

RESUMEN

Most methods used for the characterization of graphene produced by liquid phase exfoliation require the deposition of the liquid sample on a substrate and subsequent drying. Because of this or other post-synthetic treatments, the reliability of the data in describing the actual features of the graphene particles in the pristine solution becomes questionable. Hence there is a need for new methods that permit the study of graphene directly in solution. Fluorescence imaging is at present the most convenient and sensitive method to visualize nanosized objects in solution. Here we report the development of a new method for visualizing and tracking exfoliated graphene directly in solution using a conventional set-up for fluorescence microscopy. We functionalized a fluorescent surfactant typically used for exfoliating graphite in aqueous phase (Pluronic P123) with two different fluorophores, in order to make graphene detectable by fluorescence microscopy. The photophysical interactions between the fluorescent surfactant and graphene were investigated at the bulk level. Finally, fluorescence microscopy allowed us to track the carbon particles produced and to identify two different populations of particles with sizes of 265 ± 25 and 1100 ± 200 nm respectively. The correlation of these results with TEM and DLS data is discussed.

2.
Chemphyschem ; 12(4): 863-70, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21337484

RESUMEN

CdSe quantum dots stabilised by thiomalic acid have been synthesised by an aqueous biphasic ligand exchange reaction in air. The materials are completely water-soluble and were found to be stable over a long time. X-ray diffraction and transmission electron microscopy reveal the formation of CdSe nanocrystals with cubic structure (a=0.6077 nm; spatial group: F-43m). The average particle size is about 5 nm. Energy dispersive X-ray analysis shows that the nanocrystals are nonstoichiometric, with a Cd/Se ratio varying between 60/40 and 70/30, and indicates the presence of Cd(2+) ions at the nanocrystal surface. Diffuse reflectance infrared Fourier transform measurements suggest that thiomalic acid chelates CdSe through the thiol group and one carboxylic function, while the second COOH group is semi-free. A complex-like structure is proposed, in which thiomalic acid forms a five-membered chelate ring with the Cd(2+) ions present on the nanocrystal surface. Chelate effect accounts for the easiness of ligand exchange and is expected to additionally stabilise the nanosystem.

3.
Phys Chem Chem Phys ; 12(17): 4473-80, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20407721

RESUMEN

We have devised a novel dip coating procedure to form highly crystalline and macroscopic pi-conjugated architectures on solid surfaces. We have employed this approach to a technologically relevant system, i.e. the electron-acceptor [6,6]-phenyl C61 butyric acid methyl ester molecule (PCBM), which is the most commonly used electron-acceptor in organic photovoltaics. Highly ordered, hexagonal shaped crystals of PCBM, ranging between 1 to 80 mum in diameter and from 20 to 500 nm in thickness, have been grown by dip coating the substrates into a solution containing the fullerene derivative. These crystals have been found to possess a monocrystalline character, to exhibit a hexagonal symmetry and to display micron sized molecularly flat terraces. The crystals have been prepared on a wide variety of surfaces such as SiO(x), silanized SiO(x), Au, graphite, amorphous carbon-copper grids and ITO. Their multiscale characterization has been performed by atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), X-ray diffraction (XRD), optical microscopy, scanning and transmission electron microscopy (SEM, TEM).To test the stability of these electron accepting PCBM crystals, they have been coated with a complementary, electron donor hexa-peri-hexabenzocoronene (HBC) derivative by solution processing from acetone and chloroform-methanol blends. The HBC self assembles in a well-defined network of nanofibers on the PCBM substrate, and the two materials can be clearly resolved by AFM and KPFM.Due to its structural precision on the macroscopic scale, the PCBM crystals appear as ideal interface to perform fundamental photophysical studies in electron-acceptor and -donor blends, as well as workbench for unravelling the architecture vs. function relationship in organic solar cells prototypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...