Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oral Biosci ; 66(1): 241-248, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342298

RESUMEN

OBJECTIVES: This study determined the early development of taste buds by observing the changes in the three-dimensional structures of taste pores and microvilli in the circumvallate papillae (CVP) of mice, from pre- and postnatal stages to the adult stages. METHODS: Fragments of mouse CVP tissue were collected on embryonic day (E) 18 and postnatal days (P) 0, 3, 6, 7, 14, 21, 28, and 56. The surfaces of the tissue fragments located pore apertures via scanning electron microscopy, and the sizes of the CVP and maximum diameters of the pores were estimated from the recorded images. Likewise, changes in the structures of the epithelium around the pore aperture and microvilli protruding from the pores were examined. RESULTS: The size of the CVP exhibited a linear increase with age from E18 to P56. The epithelium around the pore aperture demonstrated changes to form microridges, indicating a characteristic pattern during CVP development. The size of the pore aperture also increased with age from E18 to P56. Furthermore, an increase in the number of pores with protruding microvilli was observed at the base of the epithelial trench. A significant positive correlation was observed between the maximum diameter of the pore and the size of the CVP. CONCLUSIONS: The expansion in the lateral view of the CVP was associated with the developmental stage from E18 to P56, suggesting that the growth of the CVP leads to the opening and enlargement of the taste pores with microvillus projections during these stages.


Asunto(s)
Papilas Gustativas , Ratones , Animales , Papilas Gustativas/química , Gusto , Microscopía Electrónica de Rastreo , Epitelio
2.
J Anat ; 244(6): 1067-1077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258312

RESUMEN

Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Transducción de Señal , Raíz del Diente , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , Ratones , Transducción de Señal/fisiología , Diente Molar/embriología , Odontogénesis/fisiología
3.
Odontology ; 108(3): 386-395, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32026140

RESUMEN

There exists a close connection between changes occurring in the teeth and those occurring in the jaw during the evolutionary process. In mammals, the roots of teeth are supported, along with periodontal ligaments and alveolar bones by a unique structure termed the gomphosis. In the present study, we performed combined in silico analysis using the information obtained from various DNA microarrays and identified 19 putative tooth root formation-related genes. Furthermore, quantitative PCR was performed on the candidate genes, Chd3 was confirmed as having sufficient expression levels in the early stage of tooth root formation and increased gene expression toward the middle stage. A high degree of Chd3 gene expression was observed in secretory ameloblasts and Hertwig's epithelial root sheath (HERS), but low expression was observed in developing odontoblasts and stellate reticulum. The CHD3 foci were observed in the nucleus of the HERS01a cells. In addition, knockdown experiments using SiChd3 suggested the involvement of Chd3 in the suppression of DNA synthesis. These results suggested that Chd3 plays a role in DNA synthesis in HERS cells for promoting tooth root development.


Asunto(s)
Células Epiteliales , Raíz del Diente , Animales , ADN , Órgano del Esmalte , Odontogénesis
4.
J Oral Biosci ; 62(1): 58-63, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862385

RESUMEN

OBJECTIVES: The aim of this study was to explore the relationship between the consumption of a high-fat diet and aging-dependent formation of maxillary incisor grooves in C57BL/6 mice, and to identify putative maxillary incisor groove-related genes. METHODS: We fed 2-month-old and 16-month-old C57BL/6 mice on either a chow diet or a high-fat diet for three months and observed changes in maxillary incisor grooves. We examined tissue sections of the maxillary incisors with grooves and carried out transcriptome analysis of the apical tissue fragments of maxillary incisors with/without grooves. RESULTS: Consumption of a high-fat diet for three months resulted in significant increases in both body weight and the number of incisor grooves. Both the number and frequency of incisor grooves increased in an age-dependent manner from 26 to 28 months, during which time an additional groove appeared. There was abnormal differentiation and apoptosis of ameloblasts on the labial surface at the grooves of the maxillary incisors. Transcriptome analysis identified 23 genes as being specific to 24-month-old mice; these included several genes related to apoptosis and cell differentiation. CONCLUSIONS: The study findings indicate that, in C57BL/6 mice, consumption of a high-fat diet increases labial groove formation in maxillary incisors, which is related to aging of the tissue stem cells in the apical root end of the teeth.


Asunto(s)
Incisivo , Ápice del Diente , Envejecimiento , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL
5.
PLoS One ; 13(9): e0204126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235284

RESUMEN

Periodic patterning of iterative structures is diverse across the animal kingdom. Clarifying the molecular mechanisms involved in the formation of these structure helps to elucidate the process of organogenesis. Turing-type reaction-diffusion mechanisms have been shown to play a critical role in regulating periodic patterning in organogenesis. Palatal rugae are periodically patterned ridges situated on the hard palate of mammals. We have previously shown that the palatal rugae develop by a Turing-type reaction-diffusion mechanism, which is reliant upon Shh (as an inhibitor) and Fgf (as an activator) signaling for appropriate organization of these structures. The disturbance of Shh and Fgf signaling lead to disorganized palatal rugae. However, the mechanism itself is not fully understood. Here we found that Lrp4 (transmembrane protein) was expressed in a complementary pattern to Wise (a secreted BMP antagonist and Wnt modulator) expression in palatal rugae development, representing Lrp4 expression in developing rugae and Wise in the inter-rugal epithelium. Highly disorganized palatal rugae was observed in both Wise and Lrp4 mutant mice, and these mutants also showed the downregulation of Shh signaling, which was accompanied with upregulation of Fgf signaling. Wise and Lrp4 are thus likely to control palatal rugae development by regulating reaction-diffusion mechanisms through Shh and Fgf signaling. We also found that Bmp and Wnt signaling were partially involved in this mechanism.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Paladar Duro/embriología , Paladar Duro/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Difusión , Regulación del Desarrollo de la Expresión Génica , Proteínas Relacionadas con Receptor de LDL , Ratones , Ratones Mutantes , Paladar Duro/patología , Fenotipo , Receptores de LDL/genética , Transducción de Señal
6.
Biochem Biophys Res Commun ; 496(2): 324-327, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29337060

RESUMEN

Labial grooves in maxillary incisors have been reported in several wild-type rodent species. Previous studies have reported age-dependent labial grooves occur in moderate prevalence in C57BL/6 mice; however, very little is known about the occurrence of such grooves. In the present study, we observed age-dependent groove formation in C57BL/6 mice up to 26 months after birth and found that not only the frequency of the appearance of incisor grooves but also the number of grooves increased in an age-dependent manner. We examined the molecular mechanisms of age-dependent groove formation by performing DNA microarray analysis of the incisors of 12-month-old (12M) and 24-month-old (24M) mice. Amelx, encoding the major enamel matrix protein AMELOGENIN, was identified as a 12M-specific gene. Comparing with wild-type mice, the maxillary incisors of Amelx-/- mutants indicated the increase of the frequency and number of labial grooves. These findings suggested that the Amelx gene impacts the age-dependent appearance of the labial incisor groove in C57BL/6 mice.


Asunto(s)
Envejecimiento/genética , Amelogenina/genética , Esmalte Dental/metabolismo , Dentina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Incisivo/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Amelogenina/deficiencia , Animales , Esmalte Dental/diagnóstico por imagen , Esmalte Dental/patología , Dentina/diagnóstico por imagen , Dentina/patología , Incisivo/diagnóstico por imagen , Incisivo/patología , Maxilar/diagnóstico por imagen , Maxilar/metabolismo , Maxilar/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Tomografía Computarizada por Rayos X
7.
Biochem Biophys Res Commun ; 497(3): 924-929, 2018 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-29253570

RESUMEN

Tooth and bone are major tissues involved in physiological calcification in the body, and they use similar molecular pathways for development, homeostasis, and regeneration. Harmine (HMN) is a natural small compound that stimulates osteoblast differentiation in vitro and in vivo. Here we examined the biological effect of HMN on the postnatal development of molar tooth roots and periodontal tissues. HMN supported the formation of tooth roots and periodontal tissues in developing tooth germs. In tooth germ organ culture, HMN promoted the elongation of Hertwig's epithelial root sheath (HERS) and stimulated cell proliferation in HERS and dental follicle-derived tissues, including dental papillae and dental follicles. HMN stimulated cell proliferation and cell movement of HERS-derived cells without mesenchymal cells in vitro and directly induced the phosphorylation of SMAD1/5/8 protein in HERS-derived cells. Our results indicated that HMN was the first natural small compound to stimulate postnatal development of tooth germs.


Asunto(s)
Harmina/farmacología , Diente Molar/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Raíz del Diente/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Diente Molar/crecimiento & desarrollo , Diente Molar/metabolismo , Proteína Smad1/análisis , Proteína Smad5/análisis , Proteína Smad8/análisis , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo
8.
Biochem Biophys Res Commun ; 495(4): 2579-2583, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29278699

RESUMEN

Bitter taste avoidance behavior (BAB) plays a fundamental role in the avoidance of toxic substances with a bitter taste. However, the molecular basis underlying the development of BAB is unknown. To study critical developmental events by which taste buds turn into functional organs with BAB, we investigated the early phase development of BAB in postnatal mice in response to bitter-tasting compounds, such as quinine and thiamine. Postnatal mice started to exhibit BAB for thiamine and quinine at postnatal day 5 (PD5) and PD7, respectively. Histological analyses of taste buds revealed the formation of microvilli in the taste pores starting at PD5 and the localization of type 2 taste receptor 119 (TAS2R119) at the microvilli at PD6. Treatment of the tongue epithelium with cytochalasin D (CytD), which disturbs ACTIN polymerization in the microvilli, resulted in the loss of TAS2R119 localization at the microvilli and the loss of BAB for quinine and thiamine. The release of ATP from the circumvallate papillae tissue due to taste stimuli was also declined following CytD treatment. These results suggest that the localization of TAS2R119 at the microvilli of taste pores is critical for the initiation of BAB.


Asunto(s)
Actinas/metabolismo , Reacción de Prevención/fisiología , Microvellosidades/metabolismo , Fracciones Subcelulares/metabolismo , Papilas Gustativas/fisiología , Gusto/fisiología , Animales , Animales Recién Nacidos , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Tisular
9.
Dev Dyn ; 244(5): 703-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25733312

RESUMEN

BACKGROUND: The brain vascular system arises from the perineural vascular plexus (PNVP) which sprouts radially into the neuroepithelium and subsequently branches off laterally to form a secondary plexus in the subventricular zone (SVZ), the subventricular vascular plexus (SVP). The process of SVP formation remains to be fully elucidated. We investigated the role of Foxc1 in early stage vascular formation in the ventral telencephalon. RESULTS: The Foxc1 loss of function mutant mouse, Foxc1(ch/ch) , showed enlarged telencephalon and hemorrhaging in the ventral telencephalon by embryonic day 11.0. The mutant demonstrated blood vessel dilation and aggregation of endothelial cells in the SVZ after the invasion of endothelial cells through the radial path, which lead to failure of SVP formation. During this early stage of vascular development, Foxc1 was expressed in endothelial cells and pericytes, as well as in cranial mesenchyme surrounding the neural tube. Correspondingly, abnormal deposition pattern of basement membrane proteins around the vessels and increased strong Vegfr2 staining dots were found in the aggregation sites. CONCLUSIONS: These observations reveal an essential role for Foxc1 in the early stage of vascular formation in the telencephalon.


Asunto(s)
Circulación Cerebrovascular/fisiología , Embrión de Mamíferos , Factores de Transcripción Forkhead/metabolismo , Telencéfalo , Animales , Embrión de Mamíferos/irrigación sanguínea , Embrión de Mamíferos/embriología , Factores de Transcripción Forkhead/genética , Ratones , Ratones Mutantes , Telencéfalo/irrigación sanguínea , Telencéfalo/embriología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
10.
Odontology ; 103(2): 136-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24374984

RESUMEN

Fibroblast growth factors (FGFs) regulate the proliferation and differentiation of various cells via their respective receptors (FGFRs). During the early stages of tooth development in fetal mice, FGFs and FGFRs have been shown to be expressed in dental epithelia and mesenchymal cells at the initial stages of odontogenesis and to regulate cell proliferation and differentiation. However, little is known about the expression patterns of FGFs in the advanced stages of tooth development. In the present study, we focused on FGF18 expression in the rat mandibular first molar (M1) during the postnatal crown and root formation stages. FGF18 signals by RT-PCR using cDNAs from M1 were very weak at postnatal day 5 and were significantly up-regulated at days 7, 9 and 15. Transcripts were undetectable by in situ hybridization (ISH) but could be detected by in situ RT-PCR in the differentiated odontoblasts and cells of the sub-odontoblastic layer in both crown and root portions of M1 at day 15. The transcripts of FGFR2c and FGFR3, possible candidate receptors of FGF18, were detected by RT-PCR and ISH in differentiated odontoblasts throughout postnatal development. These results suggest the continual involvement of FGF18 signaling in the regulation of odontoblasts during root formation where it may contribute to dentin matrix formation and/or mineralization.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Odontogénesis/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Hibridación in Situ , Mandíbula , Diente Molar/fisiología , Odontoblastos/fisiología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA