Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 203(6): 3235-3243, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33837440

RESUMEN

The CRISPR-Cas system is widely distributed in prokaryotes and plays an important role in the adaptive immunity of bacteria and archaea. Bifidobacterium is an important component of the intestinal flora of humans and animals, and some species of this bacterium can be employed as food additives. However, the Bifidobacterium CRISPR-Cas system has not been fully elucidated to date. In this study, the genomes of 110 strains of Bifidobacterium were employed to research the diversity of the type I-U system. The 110 strains were divided into five groups according to the genes adjacent to the CRISPR locus, including group A, B, C, D and E. Strains in the intergroup had unique species classifications and MLST types. An evolutionary tree was constructed based on the conserved cas4/cas1 fusion gene. The results showed that group A had a different evolutionary branch compared with the other groups and had a relatively low spacer number. Notably, group B, C and E had exhibited ABC transporter regulators in the genes adjacent to the CRISPR locus. ABC transporters play important roles in the exocytosis of many antibiotics and are involved in horizontal gene transfer. This mechanism may have promoted the evolution of Bifidobacterium and the horizontal gene transfer of the type I-U system, which may have promoted the generation of system diversity. In summary, our results help to elucidate the role of the type I-U system in the evolution of Bifidobacterium.


Asunto(s)
Bifidobacterium , Sistemas CRISPR-Cas , Variación Genética , Bifidobacterium/genética , Sistemas CRISPR-Cas/genética , Transferencia de Gen Horizontal , Humanos , Tipificación de Secuencias Multilocus
2.
Front Microbiol ; 11: 1708, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793166

RESUMEN

The hypervariable nature of clustered regularly interspaced short palindromic repeats (CRISPRs) makes them valuable biomarkers for subtyping and epidemiological investigation of Escherichia coli. Shiga toxin-producing E. coli (STEC) serogroup O80 is one hybrid pathotype that is emerging recently in Europe and is involved in hemolytic uremic syndrome with bacteremia. However, whether STEC O80 strains can be genotyped using CRISPR has not been evaluated. In this study, we aimed to characterize the genetic diversity of 81 E. coli serogroup O80 isolates deposited in the National Center for Biotechnology Information databases using CRISPR typing and to explore the association between virulence potential and CRISPR types (CTs). A total of 21 CTs were identified in 80 O80 strains. CRISRP typing provided discrimination with variants of a single serotype, which suggested a stronger discriminatory power. Based on CRISPR spacer profiles, 70 O80:H2 isolates were further divided into four lineages (lineage LI, LII, LIII, and LIV), which correlated well with whole-genome single nucleotide polymorphisms typing and virulence gene profiles. Moreover, the association between CRISPR lineages and virulence gene profiles hinted that STEC O80:H2 strains may originate from O80:H19 or O80:H26 and that lineage LI may have been evolved from lineage LII. CT2 and CT13 were shared by human and cattle isolates, suggesting that there might be the potential transmission between cattle and human. Collectively, CRISPR typing is one technology that can be used to monitor the transmission of STEC O80 strains and provide new insights into microevolution of serogroup O80.

3.
Infect Drug Resist ; 12: 2853-2863, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31571941

RESUMEN

BACKGROUND: Multi-drug-resistant Escherichia coli poses a great threat to human health, especially resistant to ampicillin (AMP), but the mechanism of drug resistance is not very clear. PURPOSE: To understand the mechanism of resistance of E. coli to beta-lactam antibiotics by inducing drug resistance of sensitive bacteria in laboratory. METHODS: Clinical sensitive E. coli strain was induced into resistance strain by 1/2 minimum inhibitive concentration (MIC) induced trails of AMP. The drug resistance spectrum was measured by modified K-B susceptibility test. Whole-genome sequencing analysis was used to analyze primary sensitive strain, and resequencing was used to analyze induced strains. Protein tertiary structure encoded by the gene containing single nucleotide polymorphism (SNP) was analyzed by bioinformatics. RESULTS: After 315 hrs induced, the MIC value of E. coli 15743 reached to 256 µg/mL, 64 times higher than that of the sensitive bacteria. During the induction process, the bacterial resistance process is divided into two stages. The rate of drug resistance occurs rapidly before reaching the critical concentration of 32 µg/mL, and then the resistance rate slows down. Sequencing of the genome of resistant strain showed that E. coli 15743 drug-resistant strain with the MIC values of 32 and 256 µg/mL contained four and eight non-synonymous SNPs, respectively. These non-synonymous SNPs were distributed in the genes of frdD, ftsI, acrB, OmpD, marR, VgrG, and envZ. CONCLUSION: These studies will improve our understanding of the molecular mechanism of AMP resistance of E. coli, and may provide the basis for prevention and control of multi-drug-resistant bacteria and generation of new antibiotics to treat E. coli infection.

4.
Infect Genet Evol ; 74: 103916, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31195154

RESUMEN

E. coli of phylogenetic group B2 is responsible for many extraintestinal infections, posing a great threat to health. The relatively polymorphic nature of CRISPR in phylogenetically related E. coli strains makes them potential markers for bacterial typing and evolutionary studies. In the current work, we investigated the occurrence and diversity of CRISPR/Cas system and explored its potential for genotyping. Type I-F CRISPR/Cas systems were found in 413 of 1190 strains of E. coli and exhibited the clustering within certain CCs and STs. And CRISPR spacer contents correlated well with MLST types. The divergence analysis of CRISPR showed stronger discriminatory power than MLST, and CRISPR polymorphism was instrumental for differentiating highly closely related strains. The timeline of spacer acquisition and deletion provided important information for inferring the evolution model between distinct serotypes. Identical spacer sequences were shared by strains with the same H-antigen type but not strains with the same O-antigen type. The homology between spacers and antibiotic-resistant plasmids demonstrated the role of Type I-F system in limiting the acquisition of antimicrobial resistance. Collectively, our data presents the dynamic nature of Type I-F CRISPR in E. coli of phylogenetic group B2 and provides new insights into the application of CRISPR-based typing in the species.


Asunto(s)
Sistemas CRISPR-Cas , Escherichia coli/clasificación , Tipificación de Secuencias Multilocus/métodos , Polimorfismo Genético , ADN Bacteriano/genética , Escherichia coli/genética , Evolución Molecular , Técnicas de Genotipaje , Humanos , Filogenia , Plásmidos/genética
5.
Mol Genet Genomics ; 294(5): 1263-1275, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31134321

RESUMEN

Clostridium perfringens is an important pathogen of human and livestock infections, posing a threat to health. The horizontal gene transfer (HGT) of plasmids that carry toxin-related genes is involved in C. perfringens pathogenicity. The CRISPR/Cas system, which has been identified in a wide range of prokaryotes, provides acquired immunity against HGT. However, information about the CRISPR/Cas system in Clostridium perfringens is still limited. In this study, 111 C. perfringens strains with publicly available genomes were used to analyze the occurrence and diversity of CRISPR/Cas system and evaluate the potential of CRISPR-based genotyping in this multi-host pathogen. A total of 59 out of the 111 genomes harbored at least one confirmed CRISPR array. Four CRISPR/Cas system subtypes, including subtypes IB, IIA, IIC, and IIID systems, were identified in 32 strains. Subtype IB system was the most prevalent in this species, which was subdivided into four subgroups displaying subgroup specificity in terms of cas gene content, repeat sequence content, and PAM. We showed that the CRISPR spacer polymorphism can be used for evolutionary studies, and that it can provide discriminatory power for typing strains. Nevertheless, the application of this approach was largely limited to strains that contain the CRISPR/Cas system. Spacer origin analysis revealed that approximately one-fifth of spacers showed significant matches to plasmids and phages, thereby suggesting the implication of CRISPR/Cas systems in controlling HGT. Collectively, our results provide new insights into the diversity and evolution of CRISPR/Cas system in C. perfringens.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium perfringens/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Bacteriófagos/genética , Biología Computacional/métodos , Transferencia de Gen Horizontal/genética , Genoma Bacteriano/genética , Filogenia , Plásmidos/genética , Polimorfismo Genético/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA