Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(18): e202201540, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35199428

RESUMEN

Direct conversion of methane into value-added chemicals, such as methanol under mild conditions, is a promising route for industrial applications. In this work, atomically dispersed Rh on TiO2 suspended in an aqueous solution was used for the oxidation of methane to methanol. Promoted by copper cations (as co-catalyst) in solution, the catalysts exhibited high activity and selectivity for the production of methanol using molecular oxygen with the presence of carbon monoxide at 150 °C with a reaction pressure of 31 bar. Millimole level yields of methanol were reached with the selectivity higher than 99 % using the Rh/TiO2 catalysts with the promotion of the copper cation. CO was the reductive agent to generate H2 from H2 O, which led to the formation of H2 O2 through the reaction of H2 and O2 . Atomically dispersed Rh activated the C-H bond in CH4 and catalyzed the oxidation using H2 O2 . Copper cations maintained the low-valence state of Rh. Moreover, copper acted as a scavenger for suppressing the overoxidation, thus leading to the high selectivity of methanol.

2.
J Am Chem Soc ; 143(51): 21567-21579, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34908398

RESUMEN

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. The atomic dispersion of Ni is paramount for selective ethanol to acetaldehyde conversion, and we show that even the presence of small Ni ensembles in the Au surface results in the formation of undesirable byproducts via C-C scission. Spectroscopic, kinetic, and theoretical investigations of the reaction mechanism reveal that both C-H and O-H bond cleavage steps are kinetically relevant and single Ni atoms are confirmed as the active sites. X-ray absorption spectroscopy studies allow us to follow the charge of the Ni atoms in the Au host before, under, and after a reaction cycle. Specifically, in the pristine state the Ni atoms carry a partial positive charge that increases upon coordination to the electronegative oxygen in ethanol and decreases upon desorption. This type of oxidation state cycling during reaction is similar to the behavior of single-site homogeneous catalysts. Given the unique electronic structure of many single-site catalysts, such a combined approach in which the atomic-scale catalyst structure and charge state of the single atom dopant can be monitored as a function of its reactive environment is a key step toward developing structure-function relationships that inform the design of new catalysts.

3.
Nat Commun ; 12(1): 1549, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750788

RESUMEN

The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.

4.
J Phys Chem A ; 125(1): 88-98, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33372517

RESUMEN

Single atom (SA), noble metal catalysts are of interest due to high projected catalytic activity while minimizing cost. Common issues facing many synthesis methodologies include complicated processes, low yields of SA product, and production of mixtures of SA and nanoparticles (NPs). Herein we report a simple, room-temperature synthesis of single Pt-atom decorated, anatase Fe-doped TiO2 particles that leverages the Fe dopant as an engineered defect site to photodeposit and stabilize atomically dispersed Pt. Both particle morphology and Fe dopant location are based on thermodynamic principles (Gibbs-Wulff construction). CO-DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) reveals absence of bridge-bonded CO signal, confirming atomically dispersed Pt. XAS (X-ray absorption spectroscopy) of both Pt and Fe indicates Fe-O-Pt bonding that persists through catalytic cycling. Mass balance indicates that the Pt loading on single particles is 2.5 wt % Pt; the single Pt-atom decorated nanoparticle yield is 17%. Pt-containing particles show more than an order-of-magnitude increased photooxidation efficiency relative to particles containing only Fe. High single-atom-Pt yield, ease of synthesis, and high catalytic activity demonstrate the utility and promise of this method. The principles of this photodeposition synthesis allow for its generalizability toward other SA metals of catalytic interest.

5.
Sci Adv ; 6(25): eaba3809, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596455

RESUMEN

The preferential oxidation of CO (PROX) in hydrogen-rich fuel gas streams is an attractive option to remove CO while effectively conserving energy and H2. However, high CO conversion with concomitant high selectivity to CO2 but not H2O is challenging. Here, we report the synthesis of high-loading single Pt atom (2.0 weight %) catalysts with oxygen-bonded alkaline ions that stabilize the cationic Pt. The synthesis is performed in aqueous solution and achieves high Pt atom loadings in a single-step incipient wetness impregnation of alumina or silica. Promisingly, these catalysts have high CO PROX selectivity even at high CO conversion (~99.8% conversion, 70% selectivity at 110°C) and good stability under reaction conditions. These findings pave the way for the design of highly efficient single-atom catalysts, elucidate the role of ─OH species in CO oxidation, and confirm the absence of a support effect for our case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...