Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 57(2): 329-41, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16330523

RESUMEN

Light intensity and atmospheric CO2 partial pressure are two environmental signals known to regulate stomatal numbers. It has previously been shown that if a mature Arabidopsis leaf is supplied with either elevated CO2 (750 ppm instead of ambient at 370 ppm) or reduced light levels (50 micromol m-2 s-1 instead of 250 micromol m-2 s-1), the young, developing leaves that are not receiving the treatment grow with a stomatal density as if they were exposed to the treatment. But the signal(s) that it is believed is generated in the mature leaves and transmitted to developing leaves are largely unknown. Photosynthetic rates of treated, mature Arabidopsis leaves increased in elevated CO2 and decreased when shaded, as would be expected. Similarly, the levels of sugars (glucose, fructose, and sucrose) in the treated mature leaves increased in elevated CO2 and decreased with shade treatment. The levels of sugar in developing leaves were also measured and it was found that they mirrored this result even though they were not receiving the shade or elevated CO2 treatment. To investigate the effect of these treatments on global gene expression patterns, transcriptomics analysis was carried out using Affymetrix, 22K, and ATH1 arrays. Total RNA was extracted from the developing leaves after the mature leaves had received either the ambient control treatment, the elevated CO2 treatment, or the shade treatment, or both elevated CO2 and shade treatments for 2, 4, 12, 24, 48, or 96 h. The experiment was replicated four times. Two other experiments were also conducted, one to compare and contrast gene expression in response to plants grown at elevated CO2 and the other to look at the effect of these treatments on the mature leaf. The data were analysed and 915 genes from the untreated, signalled leaves were identified as having expression levels affected by the shade treatment. These genes were then compared with those whose transcript abundance was affected by the shade treatment in the mature treated leaves (1181 genes) and with 220 putative 'stomatal signalling' genes previously identified from studies of the yoda mutant. The results of these experiments and how they relate to environmental signalling are discussed, as well as possible mechanisms for systemic signalling.


Asunto(s)
Aclimatación , Arabidopsis/metabolismo , Dióxido de Carbono/farmacología , Luz , Transducción de Señal , Arabidopsis/anatomía & histología , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Clorofila/análisis , Difusión , Ambiente , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , ARN de Planta/metabolismo
2.
J Exp Bot ; 56(410): 287-96, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15596481

RESUMEN

Naturally occurring variation in wild species can be used to increase the genetic diversity of cultivated crops and improve agronomic value. Populations of introgression lines carrying wild species alleles afford an opportunity to identify traits associated with the introgressed regions, and facilitate characterization of the biochemistry and genetics underlying these phenotypes. Understanding plant metabolic pathways and the interactions between genes, phenotype, and environment is fundamental to functional genomics. Successful analysis of the complex network of plant metabolism requires analytical methods able to record information on as many metabolites as possible. Metabolite profiling is used to provide a snapshot of the metabolome in samples which differ in a known factor such as genetic background. Differences between the metabolite profiles can identify those metabolites/metabolic pathways affected by the introgression and allow genetic maps for metabolic alterations to be established. A Time-of-Flight Mass Spectrometry method is presented, with associated data reduction, used for profiling aqueous metabolites fom tomato. Analysis of ripe fruits of two tomato species, Lycopersicon esculentum and L. pennellii, showed differences in the amounts of many metabolites, including organic acids and sugars. Six introgression lines, L. pennellii introgressions within L. esculentum, were also examined and showed that Principal Component Analysis can reveal subtle differences in metabolism of the introgressed lines when compared to their parents.


Asunto(s)
Solanum lycopersicum/metabolismo , Frutas , Solanum lycopersicum/química , Solanum lycopersicum/genética , Fenotipo , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...