Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38421257

RESUMEN

In 2014, we introduced a new experimental approach to study the UV photo-processing of cryogenic ices of astrophysical interest using laser ablation in a combination of ionization and time-of-flight mass spectrometry (ToF-MS). The setup, Mass Analytical Tool to Research Interstellar ICES, allowed us to detect newly formed species at low abundances. However, we found that with the increase in molecular complexity over the years, the detection of larger photoproducts was hindered by the dynamic range of detectors used. Here, we introduce a method to overcome this issue that we expect to be useful for similar applications in other research fields. The concept is based on a precisely controlled high-energy pulser that regulates the voltage across the deflection plates of the ToF-MS instrument to deflect the most abundant species and prevent them from reaching the detector. In this way, the detector sensitivity can be increased from an operating voltage of 2500 V up to 3000 V. The applicability is first illustrated in the simple case of an argon matrix, where 40Ar+ ions are deflected to increase the detection sensitivity for 40Ar2+ at m/z = 20 and 40Ar2+ at m/z = 80 by a factor 30. Similarly, it is shown that substantially larger complex organic molecules, an important species in astrochemical reaction networks, can be measured for UV irradiated methanol ice.

2.
Phys Chem Chem Phys ; 17(26): 17346-54, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26073296

RESUMEN

The ice photochemistry of pure methane (CH4) is studied at 20 K upon VUV irradiation from a microwave discharge H2 flow lamp. Laser Desorption Post-Ionization Time-Of-Flight Mass Spectrometry (LDPI TOF-MS) is used for the first time to determine branching ratios of primary reactions leading to CH3, CH2, and CH radicals, typically for fluences as expected in space. This study is based on a stable end-products analysis and the mass spectra are interpreted using an appropriate set of coupled reactions and rate constants. This yields clearly different values from previous gas phase studies. The matrix environment as well as the higher efficiency of reverse reactions in the ice clearly favor CH3 radical formation as the main first generation photoproduct.

3.
Rev Sci Instrum ; 85(10): 104501, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25362425

RESUMEN

A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI(2)CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH4) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/ΔM ∼320 to ∼400 for CH4 and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ⩽0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA