Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 23(15): 4107-4118, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28280089

RESUMEN

Purpose: Older acute myeloid leukemia (AML) patients have a poor prognosis; therefore, novel therapies are needed. Allogeneic natural killer (NK) cells have been adoptively transferred with promising clinical results. Here, we report the first-in-human study exploiting a unique scalable NK-cell product generated ex vivo from CD34+ hematopoietic stem and progenitor cells (HSPC) from partially HLA-matched umbilical cord blood units.Experimental Design: Ten older AML patients in morphologic complete remission received an escalating HSPC-NK cell dose (between 3 and 30 × 106/kg body weight) after lymphodepleting chemotherapy without cytokine boosting.Results: HSPC-NK cell products contained a median of 75% highly activated NK cells, with <1 × 104 T cells/kg and <3 × 105 B cells/kg body weight. HSPC-NK cells were well tolerated, and neither graft-versus-host disease nor toxicity was observed. Despite no cytokine boosting being given, transient HSPC-NK cell persistence was clearly found in peripheral blood up to 21% until day 8, which was accompanied by augmented IL15 plasma levels. Moreover, donor chimerism up to 3.5% was found in bone marrow. Interestingly, in vivo HSPC-NK cell maturation was observed, indicated by the rapid acquisition of CD16 and KIR expression, while expression of most activating receptors was sustained. Notably, 2 of 4 patients with minimal residual disease (MRD) in bone marrow before infusion became MRD negative (<0.1%), which lasted for 6 months.Conclusions: These findings indicate that HSPC-NK cell adoptive transfer is a promising, potential "off-the-shelf" translational immunotherapy approach in AML. Clin Cancer Res; 23(15); 4107-18. ©2017 AACR.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia Mieloide Aguda/terapia , Anciano , Antígenos CD34/genética , Antígenos CD34/inmunología , Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Interleucina-15/sangre , Células Asesinas Naturales/trasplante , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Masculino , Regresión Neoplásica Espontánea/patología , Pronóstico
2.
PLoS One ; 6(6): e20740, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21698239

RESUMEN

Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.


Asunto(s)
Trasplante de Células , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Inmunoterapia , Células Asesinas Naturales/inmunología , Antígenos CD34/inmunología , Reactores Biológicos , Criopreservación , Humanos , Células Asesinas Naturales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...