Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639149

RESUMEN

Fungal enzymes degrading the plant cell wall, such as xylanases, can activate plant immune responses. The Fusarium graminearum FGSG_03624 xylanase, previously shown to elicit necrosis and hydrogen peroxide accumulation in wheat, was investigated for its ability to induce disease resistance. To this aim, we transiently and constitutively expressed an enzymatically inactive form of FGSG_03624 in tobacco and Arabidopsis, respectively. The plants were challenged with Pseudomonas syringae pv. tabaci or pv. maculicola and Botrytis cinerea. Symptom reduction by the bacterium was evident, while no reduction was observed after B. cinerea inoculation. Compared to the control, the presence of the xylanase gene in transgenic Arabidopsis plants did not alter the basal expression of a set of defense-related genes, and, after the P. syringae inoculation, a prolonged PR1 expression was detected. F. graminearum inoculation experiments of durum wheat spikes exogenously treated with the FGSG_03624 xylanase highlighted a reduction of symptoms in the early phases of infection and a lower fungal biomass accumulation than in the control. Besides, callose deposition was detected in infected spikes previously treated with the xylanase and not in infected control plants. In conclusion, our results highlight the ability of FGSG_03624 to enhance plant immunity, thus decreasing disease severity.


Asunto(s)
Arabidopsis/inmunología , Botrytis/patogenicidad , Resistencia a la Enfermedad/inmunología , Endo-1,4-beta Xilanasas/metabolismo , Fusarium/enzimología , Nicotiana/inmunología , Inmunidad de la Planta , Pseudomonas syringae/patogenicidad , Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología
2.
Plants (Basel) ; 9(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397168

RESUMEN

During host plant infection, pathogens produce a wide array of cell wall degrading enzymes (CWDEs) to break the plant cell wall. Among CWDEs, xylanases are key enzymes in the degradation of xylan, the main component of hemicellulose. Targeted deletion experiments support the direct involvement of the xylanase BcXyn11a in the pathogenesis of Botrytis cinerea. Since the Triticum aestivum xylanase inhibitor-I (TAXI-I) has been shown to inhibit BcXyn11a, we verified if TAXI-I could be exploited to counteract B. cinerea infections. With this aim, we first produced Nicotiana tabacum plants transiently expressing TAXI-I, observing increased resistance to B. cinerea. Subsequently, we transformed Arabidopsis thaliana to express TAXI-I constitutively, and we obtained three transgenic lines exhibiting a variable amount of TAXI-I. The line with the higher level of TAXI-I showed increased resistance to B. cinerea and the absence of necrotic lesions when infiltrated with BcXyn11a. Finally, in a droplet application experiment on wild-type Arabidopsis leaves, TAXI-I prevented the necrotizing activity of BcXyn11a. These results would confirm that the contribution of BcXyn11a to virulence is due to its necrotizing rather than enzymatic activity. In conclusion, our experiments highlight the ability of the TAXI-I xylanase inhibitor to counteract B. cinerea infection presumably by preventing the necrotizing activity of BcXyn11a.

3.
Mol Plant Microbe Interact ; 30(11): 886-895, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28800710

RESUMEN

Endo-polygalacturonases (PGs) and xylanases have been shown to play an important role during pathogenesis of some fungal pathogens of dicot plants, while their role in monocot pathogens is less defined. Pg1 and xyr1 genes of the wheat pathogen Fusarium graminearum encode the main PG and the major regulator of xylanase production, respectively. Single- and double-disrupted mutants for these genes were obtained to assess their contribution to fungal infection. Compared with wild-type strain, the ∆pg mutant showed a nearly abolished PG activity, slight reduced virulence on soybean seedlings, but no significant difference in disease symptoms on wheat spikes; the ∆xyr mutant was strongly reduced in xylanase activity and moderately reduced in cellulase activity but was as virulent as wild type on both soybean and wheat plants. Consequently, the ΔpgΔxyr double mutant was impaired in xylanase, PG, and cellulase activities but, differently from single mutants, was significantly reduced in virulence on both plants. These findings demonstrate that the concurrent presence of PG, xylanase, and cellulase activities is necessary for full virulence. The observation that the uronides released from wheat cell wall after a F. graminearum PG treatment were largely increased by the fungal xylanases suggests that these enzymes act synergistically in deconstructing the plant cell wall.


Asunto(s)
Pared Celular/metabolismo , Enzimas/metabolismo , Fusarium/enzimología , Fusarium/patogenicidad , Glycine max/microbiología , Triticum/microbiología , Biomasa , Celulasa/genética , Endo-1,4-beta Xilanasas/genética , Focalización Isoeléctrica , Mutación/genética , Enfermedades de las Plantas/microbiología , Poligalacturonasa/genética , Plantones/microbiología , Transformación Genética , Virulencia
4.
Mol Plant Microbe Interact ; 29(4): 258-67, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26713352

RESUMEN

The genome of Fusarium graminearum, the causal agent of Fusarium head blight of wheat, contains two putative pectin methylesterase (PME)-encoding genes. However, when grown in liquid culture containing pectin, F. graminearum produces only a single PME, which was purified and identified. Its encoding gene, expressed during wheat spike infection, was disrupted by targeted homologous recombination. Two Δpme mutant strains lacked PME activity but were still able to grow on highly methyl-esterified pectin even though their polygalacturonase (PG) activity showed a reduced capacity to depolymerize this substrate. The enzymatic assays performed with purified F. graminearum PG and PME demonstrated an increase in PG activity in the presence of PME on highly methyl-esterified pectin. The virulence of the mutant strains was tested on Triticum aestivum and Triticum durum spikes, and a significant reduction in the percentage of symptomatic spikelets was observed between 7 and 12 days postinfection compared with wild type, demonstrating that the F. graminearum PME contributes to fungal virulence on wheat by promoting spike colonization in the initial and middle stages of infection. In contrast, transgenic wheat plants with increased levels of pectin methyl esterification did not show any increase in resistance to the Δpme mutant, indicating that the infectivity of the fungus relies only to a certain degree on pectin degradation.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fusarium/enzimología , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Resistencia a la Enfermedad , Esterificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidad , Mutación , Pectinas/metabolismo , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Triticum/genética , Triticum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA