Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 263(Pt 2): 120102, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366443

RESUMEN

There is interest in assessing the potential climate mitigation benefit of coastal wetlands based on the balance between their greenhouse gas (GHG) emissions and carbon sequestration. Here we investigated soil GHG fluxes (CO2 and CH4) on mangroves of the Brazilian Amazon coast, and across common land use impacts including shrimp farms and a pasture. We found greater methane fluxes near the Amazon River mouth (1439 to 3312 µg C m-2 h-1), which on average are equivalent to 37% of mangrove C sequestration in the region. Soil CO2 fluxes were predominant in mangrove forests to the East of the Amazon Delta. Land use change shifted mangroves from C sinks (mean sequestration of 12.2 ± 1.4 Mg CO2e ha-1 yr-1) to net GHG sources (mean loss of 8.0 ± 3.3 Mg CO2e ha-1 yr-1). Our data suggests that mangrove forests in the Amazon can aid decreasing the net annual emissions in the Brazilian forest sector in 9.7 ± 0.8 Tg CO2e yr-1 through forest conservation and avoided deforestation.

2.
Mar Pollut Bull ; 203: 116487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744046

RESUMEN

Mangroves forests may be important sinks of carbon in coastal areas but upon their death, these forests may become net sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Here we assessed the spatial and temporal variability in soil CO2 and CH4 fluxes from dead mangrove forests and paired intact sites in SE-Brazil. Our findings demonstrated that during warmer and drier conditions, CO2 soil flux was 183 % higher in live mangrove forests when compared to the dead mangrove forests. Soil CH4 emissions in live forests were > 1.4-fold higher than the global mangrove average. During the wet season, soil GHG emissions dropped significantly at all sites. During warmer conditions, mangroves were net sources of GHG, with a potential warming effect (GWP100) of 32.9 ± 10.2 (±SE) Mg CO2e ha-1 y-1. Overall, we found that dead mangroves did not release great amounts of GHG after three years of forest loss.


Asunto(s)
Dióxido de Carbono , Monitoreo del Ambiente , Gases de Efecto Invernadero , Metano , Suelo , Humedales , Brasil , Gases de Efecto Invernadero/análisis , Suelo/química , Dióxido de Carbono/análisis , Metano/análisis , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA