Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(6): 2081-2086, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38300507

RESUMEN

Nanoscale magnetic resonance imaging (NanoMRI) is an active area of applied research with potential applications in structural biology and quantum engineering. The success of this technological vision hinges on improving the instrument's sensitivity and functionality. A particular challenge is the optimization of the magnetic field gradient required for spatial encoding and of the radio frequency field used for spin control, in analogy to the components used in clinical MRI. In this work, we present the fabrication and characterization of a magnet-in-microstrip device that yields a compact form factor for both elements. We find that our design leads to a number of advantages, among them a 4-fold increase of the magnetic field gradient compared to those achieved with traditional fabrication methods. Our results can be useful for boosting the efficiency of a variety of different experimental arrangements and detection principles in the field of NanoMRI.

2.
Phys Rev Lett ; 127(21): 216101, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34860104

RESUMEN

We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and nonconductive (SiO_{2}) surfaces. Using an ultrasensitive "nanoladder" cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find static and fluctuating fields to be spatially correlated. Furthermore, the fields are of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results are consistent with organic adsorbates significantly contributing to surface dissipation that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond.

3.
Proc Natl Acad Sci U S A ; 117(33): 19773-19779, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32753379

RESUMEN

The nonlinear optical response of a material is a sensitive probe of electronic and structural dynamics under strong light fields. The induced microscopic polarizations are usually detected via their far-field light emission, thus limiting spatial resolution. Several powerful near-field techniques circumvent this limitation by employing local nanoscale scatterers; however, their signal strength scales unfavorably as the probe volume decreases. Here, we demonstrate that time-resolved atomic force microscopy is capable of temporally and spatially resolving the microscopic, electrostatic forces arising from a nonlinear optical polarization in an insulating dielectric driven by femtosecond optical fields. The measured forces can be qualitatively explained by a second-order nonlinear interaction in the sample. The force resulting from this nonlinear interaction has frequency components below the mechanical resonance frequency of the cantilever and is thus detectable by regular atomic force microscopy methods. The capability to measure a nonlinear polarization through its electrostatic force is a powerful means to revisit nonlinear optical effects at the nanoscale, without the need for emitted photons or electrons from the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...