Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 11: 372, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225566

RESUMEN

Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

2.
Learn Mem ; 23(1): 1-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26670181

RESUMEN

Although it is currently accepted that the extinction effect reflects new context-dependent learning, this is not so clear during infancy, because some studies did not find recovery of the extinguished conditioned response (CR) in rodents during this ontogenetic stage. However, recent studies have shown the return of an extinguished CR in infant rats. The present study analyzes the possibility of recovering an extinguished CR with a reinstatement procedure in a fear conditioning paradigm, on PD17 (Experiments 1-4) and on PD24 (Experiment 5), while exploring the role of the olfactory content of the context upon the reinstatement effect during the preweanling period. Preweanling rats expressed a previously extinguished CR after a single experience with an unsignaled US. Furthermore, this result was only found when subjects were trained and tested in contexts that included an explicit odor, but not in standard experimental cages. Finally, Experiment 5 demonstrated the reinstatement effect on PD24 in a standard context. These results support the notion that extinction during infancy has the same characteristics as those described for extinction that occurs in adulthood. Instead of postulating a different mechanism for extinction during infancy, we propose that it may be more accurate to view the problem in terms of the variables that may differentially modulate the extinction effect according to the stages of ontogeny.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Electrochoque/efectos adversos , Reacción Cataléptica de Congelación/fisiología , Odorantes , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA