Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nature ; 565(7741): 645-649, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651638

RESUMEN

Categorically distinct basic drives (for example, for social versus feeding behaviour1-3) can exert potent influences on each other; such interactions are likely to have important adaptive consequences (such as appropriate regulation of feeding in the context of social hierarchies) and can become maladaptive (such as in clinical settings involving anorexia). It is known that neural systems regulating natural and adaptive caloric intake, and those regulating social behaviours, involve related circuitry4-7, but the causal circuit mechanisms of these drive adjudications are not clear. Here we investigate the causal role in behaviour of cellular-resolution experience-specific neuronal populations in the orbitofrontal cortex, a major reward-processing hub that contains diverse activity-specific neuronal populations that respond differentially to various aspects of caloric intake8-13 and social stimuli14,15. We coupled genetically encoded activity imaging with the development and application of methods for optogenetic control of multiple individually defined cells, to both optically monitor and manipulate the activity of many orbitofrontal cortex neurons at the single-cell level in real time during rewarding experiences (caloric consumption and social interaction). We identified distinct populations within the orbitofrontal cortex that selectively responded to either caloric rewards or social stimuli, and found that activity of individually specified naturally feeding-responsive neurons was causally linked to increased feeding behaviour; this effect was selective as, by contrast, single-cell resolution activation of naturally social-responsive neurons inhibited feeding, and activation of neurons responsive to neither feeding nor social stimuli did not alter feeding behaviour. These results reveal the presence of potent cellular-level subnetworks within the orbitofrontal cortex that can be precisely engaged to bidirectionally control feeding behaviours subject to, for example, social influences.


Asunto(s)
Conducta Alimentaria/fisiología , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Conducta Social , Animales , Condicionamiento Operante/fisiología , Ingestión de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética , Recompensa , Análisis de la Célula Individual
2.
Proc Natl Acad Sci U S A ; 113(4): 822-9, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26699459

RESUMEN

The structure-guided design of chloride-conducting channelrhodopsins has illuminated mechanisms underlying ion selectivity of this remarkable family of light-activated ion channels. The first generation of chloride-conducting channelrhodopsins, guided in part by development of a structure-informed electrostatic model for pore selectivity, included both the introduction of amino acids with positively charged side chains into the ion conduction pathway and the removal of residues hypothesized to support negatively charged binding sites for cations. Engineered channels indeed became chloride selective, reversing near -65 mV and enabling a new kind of optogenetic inhibition; however, these first-generation chloride-conducting channels displayed small photocurrents and were not tested for optogenetic inhibition of behavior. Here we report the validation and further development of the channelrhodopsin pore model via crystal structure-guided engineering of next-generation light-activated chloride channels (iC++) and a bistable variant (SwiChR++) with net photocurrents increased more than 15-fold under physiological conditions, reversal potential further decreased by another ∼ 15 mV, inhibition of spiking faithfully tracking chloride gradients and intrinsic cell properties, strong expression in vivo, and the initial microbial opsin channel-inhibitor-based control of freely moving behavior. We further show that inhibition by light-gated chloride channels is mediated mainly by shunting effects, which exert optogenetic control much more efficiently than the hyperpolarization induced by light-activated chloride pumps. The design and functional features of these next-generation chloride-conducting channelrhodopsins provide both chronic and acute timescale tools for reversible optogenetic inhibition, confirm fundamental predictions of the ion selectivity model, and further elucidate electrostatic and steric structure-function relationships of the light-gated pore.


Asunto(s)
Reacción de Prevención/fisiología , Cloruros/metabolismo , Activación del Canal Iónico/fisiología , Optogenética , Rodopsina/química , Potenciales de Acción , Secuencia de Aminoácidos , Animales , Arginina/química , Reacción de Prevención/efectos de la radiación , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/efectos de la radiación , Células Cultivadas , Dependovirus/genética , Electrochoque , Miedo , Tecnología de Fibra Óptica , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Células HEK293 , Hipocampo/citología , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/efectos de la radiación , Masculino , Memoria/fisiología , Memoria/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Neuronas/fisiología , Conformación Proteica , Ratas , Ratas Sprague-Dawley , Rodopsina/metabolismo , Rodopsina/efectos de la radiación , Alineación de Secuencia , Área Tegmental Ventral/fisiología
3.
Nature ; 527(7577): 179-85, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26536109

RESUMEN

Anxiety-related conditions are among the most difficult neuropsychiatric diseases to treat pharmacologically, but respond to cognitive therapies. There has therefore been interest in identifying relevant top-down pathways from cognitive control regions in medial prefrontal cortex (mPFC). Identification of such pathways could contribute to our understanding of the cognitive regulation of affect, and provide pathways for intervention. Previous studies have suggested that dorsal and ventral mPFC subregions exert opposing effects on fear, as do subregions of other structures. However, precise causal targets for top-down connections among these diverse possibilities have not been established. Here we show that the basomedial amygdala (BMA) represents the major target of ventral mPFC in amygdala in mice. Moreover, BMA neurons differentiate safe and aversive environments, and BMA activation decreases fear-related freezing and high-anxiety states. Lastly, we show that the ventral mPFC-BMA projection implements top-down control of anxiety state and learned freezing, both at baseline and in stress-induced anxiety, defining a broadly relevant new top-down behavioural regulation pathway.


Asunto(s)
Amígdala del Cerebelo/fisiología , Ansiedad/fisiopatología , Miedo/fisiología , Vías Nerviosas/fisiología , Amígdala del Cerebelo/citología , Animales , Ansiedad/psicología , Extinción Psicológica/fisiología , Miedo/psicología , Femenino , Reacción Cataléptica de Congelación/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Estrés Psicológico/fisiopatología
4.
Nature ; 497(7449): 332-7, 2013 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-23575631

RESUMEN

Obtaining high-resolution information from a complex system, while maintaining the global perspective needed to understand system function, represents a key challenge in biology. Here we address this challenge with a method (termed CLARITY) for the transformation of intact tissue into a nanoporous hydrogel-hybridized form (crosslinked to a three-dimensional network of hydrophilic polymers) that is fully assembled but optically transparent and macromolecule-permeable. Using mouse brains, we show intact-tissue imaging of long-range projections, local circuit wiring, cellular relationships, subcellular structures, protein complexes, nucleic acids and neurotransmitters. CLARITY also enables intact-tissue in situ hybridization, immunohistochemistry with multiple rounds of staining and de-staining in non-sectioned tissue, and antibody labelling throughout the intact adult mouse brain. Finally, we show that CLARITY enables fine structural analysis of clinical samples, including non-sectioned human tissue from a neuropsychiatric-disease setting, establishing a path for the transmutation of human tissue into a stable, intact and accessible form suitable for probing structural and molecular underpinnings of physiological function and disease.


Asunto(s)
Encéfalo/anatomía & histología , Imagenología Tridimensional/métodos , Imagen Molecular/métodos , Animales , Reactivos de Enlaces Cruzados/química , Formaldehído/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hibridación in Situ/métodos , Lípidos/aislamiento & purificación , Ratones , Permeabilidad , Fenotipo , Dispersión de Radiación
5.
Nature ; 496(7444): 219-23, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23515158

RESUMEN

Behavioural states in mammals, such as the anxious state, are characterized by several features that are coordinately regulated by diverse nervous system outputs, ranging from behavioural choice patterns to changes in physiology (in anxiety, exemplified respectively by risk-avoidance and respiratory rate alterations). Here we investigate if and how defined neural projections arising from a single coordinating brain region in mice could mediate diverse features of anxiety. Integrating behavioural assays, in vivo and in vitro electrophysiology, respiratory physiology and optogenetics, we identify a surprising new role for the bed nucleus of the stria terminalis (BNST) in the coordinated modulation of diverse anxiety features. First, two BNST subregions were unexpectedly found to exert opposite effects on the anxious state: oval BNST activity promoted several independent anxious state features, whereas anterodorsal BNST-associated activity exerted anxiolytic influence for the same features. Notably, we found that three distinct anterodorsal BNST efferent projections-to the lateral hypothalamus, parabrachial nucleus and ventral tegmental area-each implemented an independent feature of anxiolysis: reduced risk-avoidance, reduced respiratory rate, and increased positive valence, respectively. Furthermore, selective inhibition of corresponding circuit elements in freely moving mice showed opposing behavioural effects compared with excitation, and in vivo recordings during free behaviour showed native spiking patterns in anterodorsal BNST neurons that differentiated safe and anxiogenic environments. These results demonstrate that distinct BNST subregions exert opposite effects in modulating anxiety, establish separable anxiolytic roles for different anterodorsal BNST projections, and illustrate circuit mechanisms underlying selection of features for the assembly of the anxious state.


Asunto(s)
Ansiedad/fisiopatología , Vías Nerviosas/fisiología , Núcleos Septales/fisiopatología , Potenciales de Acción , Animales , Ansiedad/patología , Electrofisiología , Ratones , Optogenética , Núcleos Septales/anatomía & histología , Núcleos Septales/citología
6.
Mol Cell Biol ; 24(19): 8437-46, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15367665

RESUMEN

The Werner and Bloom syndromes are caused by loss-of-function mutations in WRN and BLM, respectively, which encode the RecQ family DNA helicases WRN and BLM, respectively. Persons with Werner syndrome displays premature aging of the skin, vasculature, reproductive system, and bone, and those with Bloom syndrome display more limited features of aging, including premature menopause; both syndromes involve genome instability and increased cancer. The proteins participate in recombinational repair of stalled replication forks or DNA breaks, but the precise functions of the proteins that prevent rapid aging are unknown. Accumulating evidence points to telomeres as targets of WRN and BLM, but the importance in vivo of the proteins in telomere biology has not been tested. We show that Wrn and Blm mutations each accentuate pathology in later-generation mice lacking the telomerase RNA template Terc, including acceleration of phenotypes characteristic of latest-generation Terc mutants. Furthermore, pathology not observed in Terc mutants but similar to that observed in Werner syndrome and Bloom syndrome, such as bone loss, was observed. The pathology was accompanied by enhanced telomere dysfunction, including end-to-end chromosome fusions and greater loss of telomere repeat DNA compared with Terc mutants. These findings indicate that telomere dysfunction may contribute to the pathogenesis of Werner syndrome and Bloom syndrome.


Asunto(s)
Síndrome de Bloom/metabolismo , Telómero/metabolismo , Síndrome de Werner/metabolismo , Animales , Síndrome de Bloom/genética , Constitución Corporal/genética , Constitución Corporal/fisiología , Infertilidad/genética , Infertilidad/metabolismo , Intestino Delgado/patología , Longevidad/genética , Longevidad/fisiología , Masculino , Ratones , Mutación , ARN/genética , ARN/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Testículo/patología , Síndrome de Werner/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA