Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(10): 13335-13345, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426699

RESUMEN

It is imperative to induce hydrophilicity in intrinsically hydrophobic carbon nanotubes (CNTs) without losing their superior properties for applications that specifically deal with aqueous media. A method for transforming a CNTs sheet from hydrophobic to hydrophilic by treatment with N-methyl-2-pyrrolidone (NMP) is explored. The NMP-treated CNT sheets are assessed based on complementing characterization, and it is concluded that the binding of NMP to a CNTs surface is through noncovalent interaction without the incorporation of defects in CNTs. The induced hydrophilicity in the CNTs sheet is stable for water exposure over a longer duration while it displays a semireversible nature upon heat treatment. The mechanical and electrical properties of the NMP-treated CNTs sheet revealed enhancement in the tensile strength from 221 to 421 MPa while maintaining a good electrical conductivity of ∼1.22 × 104 S/m because of the improved interfacial properties. The hydrophilic CNTs exhibited excellent adsorption capacity for methylene blue dye. The NMP-treated CNTs sheets demonstrated their suitability in flexible hybrid supercapacitor (FHSC) devices with improved electrochemical performance with enhancement in the capacitance from 5.4 to 7.6 F/g and a decrease in the equivalent series resistance from 53 to 34 Ω compared to pristine CNTs-based devices. These solid-state FHSC devices displayed excellent cyclic charge-discharge performance along with robust behavior over thousands of bending cycles without significant performance degradation. The excellent dye removal capability and superior electrochemical performance of the NMP-treated CNTs sheet is a consequence of their improved interface with aqueous media, which is governed by the hydrophilic nature of the CNTs sheet.

2.
Adv Mater ; 29(40)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28869690

RESUMEN

Polymeric microelectrode arrays (MEAs) are emerging as a new generation of biointegrated microelectrodes to transduce original electrochemical signals in living tissues to external electrical circuits, and vice versa. So far, the challenge of stretchable polymeric MEAs lies in the competition between high stretchability and good electrode-substrate adhesion. The larger the stretchability, the easier the delamination of electrodes from the substrate due to the mismatch in their Young's modulus. In this work, polypyrrole (PPy) electrode materials are designed, with PPy nanowires integrated on the high conductive PPy electrode arrays. By utilizing this electrode material, for the first time, stretchable polymeric MEAs are fabricated with both high stretchability (≈100%) and good electrode-substrate adhesion (1.9 MPa). In addition, low Young's modulus (450 kPa), excellent recycling stability (10 000 cycles of stretch), and high conductivity of the MEAs are also achieved. As a proof of concept, the as-prepared polymeric MEAs are successfully used for conformally recording the electrocorticograph signals from rats in normal and epileptic states, respectively. Further, these polymeric MEAs are also successful in stimulating the ischiadic nerve of the rat. This strategy provides a new perspective to the highly stretchable and mechanically stable polymeric MEAs, which are vital for compliant neural electrodes.


Asunto(s)
Microelectrodos , Animales , Módulo de Elasticidad , Nanocables , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...