Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175116

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune multisystem disease with poorly understood pathogenesis and ineffective treatment options. Soluble CD13 (sCD13), generated by cleavage of cell surface CD13 via matrix metalloproteinase 14 (MMP14), signals through the bradykinin receptor B1 (B1R) to elicit pro-inflammatory, pro-arthritic, and pro-angiogenic responses. In this study we explored the anti-fibrotic potential of targeting the sCD13-B1R axis in SSc. METHODS: The expression of CD13, B1R and MMP14 was examined in SSc skin and explanted dermal fibroblasts. The efficacy of B1R antagonists in the inhibition on fibrosis was determined in vitro and in vivo. RESULTS: Expression of the genes for CD13, B1R and MMP14 was elevated in skin biopsies from patients with diffuse cutaneous (dc)SSc. Notably, single cell analysis of SSc skin biopsies revealed the highest BDKRB1 expression in COL8A1-positive myofibroblasts, a population exclusively seen in SSc. TGF-ß induced the expression of BDKRB1 and production of sCD13 by dcSSc skin fibroblasts. Treatment of dcSSc fibroblasts with sCD13 promoted fibrotic gene expression, signaling, cell proliferation, migration, and gel contraction. The profibrotic sCD13 or TGFß responses were prevented by a B1R antagonist. Mice lacking Cd13 or Bdkrb1 were resistant to bleomycin-induced skin fibrosis and inflammation. Pharmacological B1R inhibition had a comparable antifibrotic effect. CONCLUSION: These results are the first to demonstrate a key role for sCD13 in SSc skin fibrosis, and suggest that targeting the sCD13-B1R signaling axis is a promising novel therapeutic approach for SSc.

2.
Front Immunol ; 13: 814533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280996

RESUMEN

Glycoprotein nonmetastatic melanoma protein B (GPNMB) is involved in various cell functions such as cell adhesion, migration, proliferation, and differentiation. In this study, we set forth to determine the role of GPNMB in systemic sclerosis (SSc) fibroblasts. Dermal fibroblasts were isolated from skin biopsies from healthy subjects and patients with diffuse cutaneous (dc)SSc. GPNMB was upregulated in dcSSc fibroblasts compared to normal fibroblasts, and correlated negatively with the modified Rodnan skin score. In addition, dcSSc fibroblasts secreted higher levels of soluble (s)GPNMB (147.4 ± 50.2 pg/ml vs. 84.8 ± 14.8 pg/ml, p<0.05), partly due to increased ADAM10. sGPNMB downregulated profibrotic genes in dcSSc fibroblasts and inhibited cell proliferation and gel contraction. The anti-fibrotic effect of sGPNMB was at least in part mediated through CD44, which is regulated by histone acetylation. TGFß downregulated GPNMB and decreased the release of its soluble form in normal fibroblasts. In dcSSc fibroblasts, GPNMB is upregulated by its own soluble form. Our data demonstrate an anti-fibrotic role of sGPNMB in SSc and established a role for the ADAM10-sGPNMB-CD44 axis in dermal fibroblasts. Upregulating GPNMB expression might provide a novel therapeutic approach in SSc.


Asunto(s)
Melanoma , Esclerodermia Difusa , Esclerodermia Localizada , Esclerodermia Sistémica , Fibrosis , Glicoproteínas , Humanos , Glicoproteínas de Membrana/genética , Receptores Fc , Esclerodermia Sistémica/patología
3.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35349485

RESUMEN

Binding of the bromodomain and extraterminal domain proteins (BETs) to acetylated histone residues is critical for gene transcription. We sought to determine the antifibrotic efficacy and potential mechanisms of BET inhibition in systemic sclerosis (SSc). Blockade of BETs was done using a pan-BET inhibitor, JQ1; BRD2 inhibitor, BIC1; or BRD4 inhibitors AZD5153 or ARV825. BET inhibition, specifically BRD4 blockade, showed antifibrotic effects in an animal model of SSc and in patient-derived diffuse cutaneous SSc (dcSSc) fibroblasts. Transcriptome analysis of JQ1-treated dcSSc fibroblasts revealed differentially expressed genes related to extracellular matrix, cell cycle, and calcium (Ca2+) signaling. The antifibrotic effect of BRD4 inhibition was mediated at least in part by downregulation of Ca2+/calmodulin-dependent protein kinase II α and reduction of intracellular Ca2+ concentrations. On the basis of these results, we propose targeting Ca2+ pathways or BRD4 as potentially novel therapeutic approaches for progressive tissue fibrosis.


Asunto(s)
Histonas , Esclerodermia Sistémica , Animales , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Fibrosis , Humanos , Proteínas Nucleares/metabolismo , Esclerodermia Sistémica/tratamiento farmacológico , Factores de Transcripción/genética
4.
Arthritis Rheumatol ; 73(8): 1501-1513, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33586346

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is characterized by widespread fibrosis and vascular complications. This study was undertaken to examine the chromatin landscape and transcription factor footprints in SSc, using an assay for genome-wide chromatin accessibility. METHODS: Dermal endothelial cells (ECs) and fibroblasts were isolated from healthy controls and patients with diffuse cutaneous SSc (dcSSc). Assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed to assess genome-wide chromatin accessibility at a read depth of ~150 million reads per sample. Transcription factor footprinting and motif binding analysis were performed, followed by functional experiments. RESULTS: Chromatin accessibility was significantly reduced in dcSSc patients compared to healthy controls. Differentially accessible chromatin loci were enriched in pathways and gene ontologies involved in the nervous system, cell membrane projections and cilia motility, nuclear and steroid receptors, and nitric oxide. In addition, chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. We found significant down-regulation of the neuronal gene NRXN1 and up-regulation of SNAI2 and ETV2 in dcSSc ECs. In dcSSc fibroblasts, down-regulation of the neuronal gene ENTPD1 and up-regulation of RUNX2 were confirmed. Further functional analysis revealed that ETV2 and NRXN1 dysregulation affected angiogenesis in ECs, while ENTPD1 enhanced profibrotic properties in dcSSc fibroblasts. CONCLUSION: Our data identify the chromatin blueprint of dcSSc, and suggest that neuronal-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting the key pathways and transcription factors identified might present novel therapeutic approaches in SSc.


Asunto(s)
Cromatina/genética , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Esclerodermia Sistémica/genética , Factores de Transcripción/genética , Regulación hacia Abajo/genética , Fibrosis/genética , Humanos , Neovascularización Patológica/genética , Esclerodermia Difusa/genética , Piel/citología , Activación Transcripcional/genética
5.
Arthritis Rheumatol ; 73(3): 520-529, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33001586

RESUMEN

OBJECTIVE: Intravenous iloprost improves Raynaud's phenomenon (RP) and promotes healing of digital ulcers in systemic sclerosis (SSc; scleroderma). Despite a short half-life, its clinical efficacy lasts weeks. Endothelial adherens junctions, which are formed by VE-cadherin clustering between endothelial cells (ECs), regulate endothelial properties including barrier function, endothelial-to-mesenchymal transition (EndoMT), and angiogenesis. We undertook this study to investigate the hypothesis that junctional disruption contributes to vascular dysfunction in SSc, and that the protective effect of iloprost is mediated by strengthening of those junctions. METHODS: Dermal ECs from SSc patients and healthy controls were isolated. The effect of iloprost on ECs was examined using immunofluorescence, permeability assays, Matrigel tube formation, and quantitative polymerase chain reaction. RESULTS: Adherens junctions in SSc were disrupted compared to normal ECs, as indicated by reduced levels of VE-cadherin and increased permeability in SSc ECs (P < 0.05). Iloprost increased VE-cadherin clustering at junctions and restored junctional levels of VE-cadherin in SSc ECs (mean ± SD 37.3 ± 4.3 fluorescence units) compared to normal ECs (mean ± SD 29.7 ± 3.4 fluorescence units; P < 0.05), after 2 hours of iloprost incubation. In addition, iloprost reduced permeability of monolayers, increased tubulogenesis, and blocked EndoMT in both normal and SSc ECs (n ≥ 3; P < 0.05). The effects in normal ECs were inhibited by a function-blocking antibody that prevents junctional clustering of VE-cadherin. CONCLUSION: Our data suggest that the long-lasting effects of iloprost reflect its ability to stabilize adherens junctions, resulting in increased tubulogenesis and barrier function and reduced EndoMT. These findings provide a mechanistic basis for the use of iloprost in treating SSc patients with RP and digital ulcers.


Asunto(s)
Uniones Adherentes/efectos de los fármacos , Antígenos CD/efectos de los fármacos , Cadherinas/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Iloprost/farmacología , Enfermedad de Raynaud/tratamiento farmacológico , Esclerodermia Difusa/tratamiento farmacológico , Vasodilatadores/farmacología , Uniones Adherentes/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Estudios de Casos y Controles , Células Cultivadas , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Iloprost/uso terapéutico , Masculino , Persona de Mediana Edad , Neovascularización Fisiológica/efectos de los fármacos , Enfermedad de Raynaud/etiología , Enfermedad de Raynaud/fisiopatología , Esclerodermia Difusa/complicaciones , Esclerodermia Difusa/fisiopatología , Vasodilatadores/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA