Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109789, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38746662

RESUMEN

Mitochondrial function relies on the coordinated transcription of mitochondrial and nuclear genomes to assemble respiratory chain complexes. Across species, the SIN3 coregulator influences mitochondrial functions, but how its loss impacts mitochondrial homeostasis and metabolism in the context of a whole organism is unknown. Exploring this link is important because SIN3 haploinsufficiency causes intellectual disability/autism syndromes and SIN3 plays a role in tumor biology. Here we show that loss of C. elegans SIN-3 results in transcriptional deregulation of mitochondrial- and nuclear-encoded mitochondrial genes, potentially leading to mito-nuclear imbalance. Consistent with impaired mitochondrial function, sin-3 mutants show extensive mitochondrial fragmentation by transmission electron microscopy (TEM) and in vivo imaging, and altered oxygen consumption. Metabolomic analysis of sin-3 mutant animals revealed a mitochondria stress signature and deregulation of methionine flux, resulting in decreased S-adenosyl methionine (SAM) and increased polyamine levels. Our results identify SIN3 as a key regulator of mitochondrial dynamics and metabolic flux, with important implications for human pathologies.

2.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38808193

RESUMEN

The SET-2 /SET1 histone H3K4 methyltransferase and RNAi pathway components are required to maintain fertility across generations in C. elegans . SET-2 preserves the germline transcriptional program transgenerationally, and RNAi pathways rely on small RNAs to establish and maintain transgenerational gene silencing. We investigated whether the functionality of RNAi-induced transgenerational silencing and the composition of pools of endogenous small RNA are affected by the absence of SET-2 . Our results suggest that defects in RNAi pathways are not responsible for the transcriptional misregulation observed in the absence of SET-2 .

3.
Development ; 150(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37818613

RESUMEN

The transcriptional co-regulator SIN3 influences gene expression through multiple interactions that include histone deacetylases. Haploinsufficiency and mutations in SIN3 are the underlying cause of Witteveen-Kolk syndrome and related intellectual disability and autism syndromes, emphasizing its key role in development. However, little is known about the diversity of its interactions and functions in developmental processes. Here, we show that loss of SIN-3, the single SIN3 homolog in Caenorhabditis elegans, results in maternal-effect sterility associated with de-regulation of the germline transcriptome, including de-silencing of X-linked genes. We identify at least two distinct SIN3 complexes containing specific histone deacetylases and show that they differentially contribute to fertility. Single-cell, single-molecule fluorescence in situ hybridization reveals that in sin-3 mutants the X chromosome becomes re-expressed prematurely and in a stochastic manner in individual germ cells, suggesting a role for SIN-3 in its silencing. Furthermore, we identify histone residues whose acetylation increases in the absence of SIN-3. Together, this work provides a powerful framework for the in vivo study of SIN3 and associated proteins.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Histona Desacetilasas , Complejo Correpresor Histona Desacetilasa y Sin3 , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Hibridación Fluorescente in Situ , Cromosoma X/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3/genética , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo
4.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34893559

RESUMEN

Changes in histone post-translational modifications are associated with aging through poorly defined mechanisms. Histone 3 lysine 4 (H3K4) methylation at promoters is deposited by SET1 family methyltransferases acting within conserved multiprotein complexes known as COMPASS. Previous work yielded conflicting results about the requirement for H3K4 methylation during aging. Here, we reassessed the role of SET1/COMPASS-dependent H3K4 methylation in Caenorhabditis elegans lifespan and fertility by generating set-2(syb2085) mutant animals that express a catalytically inactive form of SET-2, the C. elegans SET1 homolog. We show that set-2(syb2085) animals retain the ability to form COMPASS, but have a marked global loss of H3K4 di- and trimethylation (H3K4me2/3). Reduced H3K4 methylation was accompanied by loss of fertility, as expected; however, in contrast to earlier studies, set-2(syb2085) mutants displayed a significantly shortened, not extended, lifespan and had normal intestinal fat stores. Other commonly used set-2 mutants were also short-lived, as was a cfp-1 mutant that lacks the SET1/COMPASS chromatin-targeting component. These results challenge previously held views and establish that WT H3K4me2/3 levels are essential for normal lifespan in C. elegans.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fertilidad/genética , N-Metiltransferasa de Histona-Lisina/deficiencia , Longevidad/genética , Proteínas Nucleares/deficiencia , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Catálisis , Activación Enzimática , Histonas/metabolismo , Metilación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
6.
Biol Open ; 10(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33495210

RESUMEN

Auxins are plant growth regulators that influence most aspects of plant development through complex mechanisms. The development of an auxin-inducible degradation (AID) system has enabled rapid, conditional protein depletion in yeast and cultured cells. More recently, the system was successfully adapted to Caenorhabditiselegans to achieve auxin-dependent degradation of targets in all tissues and developmental stages. Whether auxin treatment alone has an impact on nematode physiology is an open question. Here we show that indole-3-acetic acid (IAA), the auxin most commonly used to trigger AID in worms, functions through the conserved IRE-1/XBP-1 branch of the Unfolded Protein Response (UPR) to promote resistance to endoplasmic reticulum (ER) stress. Because the UPR not only plays a central role in restoring ER homeostasis, but also promotes lipid biosynthesis and regulates lifespan, we suggest that extreme caution should be exercised when using the AID system to study these and related processes.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Sustancias Protectoras/farmacología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
7.
Front Cell Dev Biol ; 8: 561791, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072747

RESUMEN

Chromatin regulators contribute to the maintenance of the germline transcriptional program. In the absence of SET-2, the Caenorhabditis elegans homolog of the SET1/COMPASS H3 Lys4 (H3K4) methyltransferase, animals show transgenerational loss of germline identity, leading to sterility. To identify transcriptional signatures associated with progressive loss of fertility, we performed expression profiling of set-2 mutant germlines across generations. We identify a subset of genes whose misexpression is first observed in early generations, a step we refer to as priming; their misexpression then further progresses in late generations, as animals reach sterility. Analysis of misregulated genes shows that down-regulation of germline genes, expression of somatic transcriptional programs, and desilencing of the X-chromosome are concurrent events leading to loss of germline identity in both early and late generations. Upregulation of transcription factor LIN-15B, the C/EBP homolog CEBP-1, and TGF-ß pathway components strongly contribute to loss of fertility, and RNAi inactivation of cebp-1 and TGF-ß/Smad signaling delays the onset of sterility, showing they individually contribute to maintenance of germ cell identity. Our approach therefore identifies genes and pathways whose misexpression actively contributes to the loss of germ cell fate. More generally, our data shows how loss of a chromatin regulator in one generation leads to transcriptional changes that are amplified over subsequent generations, ultimately leading to loss of appropriate cell fate.

8.
Cells ; 9(9)2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911802

RESUMEN

Deposition of histone H3 lysine 4 (H3K4) methylation at promoters is catalyzed by the SET1/COMPASS complex and is associated with context-dependent effects on gene expression and local changes in chromatin organization. The role of SET1/COMPASS in shaping chromosome architecture has not been investigated. Here we used Caenorhabditis elegans to address this question through a live imaging approach and genetic analysis. Using quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) on germ cells expressing histones eGFP-H2B and mCherry-H2B, we find that SET1/COMPASS influences meiotic chromosome organization, with marked effects on the close proximity between nucleosomes. We further show that inactivation of set-2, encoding the C. elegans SET1 homologue, or CFP-1, encoding the chromatin targeting subunit of COMPASS, enhances germline chromosome organization defects and sterility of condensin-II depleted animals. set-2 loss also aggravates germline defects resulting from conditional inactivation of topoisomerase II, another structural component of chromosomes. Expression profiling of set-2 mutant germlines revealed only minor transcriptional changes, suggesting that the observed effects are at least partly independent of transcription. Altogether, our results are consistent with a role for SET1/COMPASS in shaping meiotic chromosomes in C. elegans, together with the non-histone proteins condensin-II and topoisomerase. Given the high degree of conservation, our findings expand the range of functions attributed to COMPASS and suggest a broader role in genome organization in different species.


Asunto(s)
Cromatina/metabolismo , Células Germinativas/metabolismo , Animales , Caenorhabditis elegans
9.
Nucleic Acids Res ; 47(21): 11164-11180, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31602465

RESUMEN

The CFP1 CXXC zinc finger protein targets the SET1/COMPASS complex to non-methylated CpG rich promoters to implement tri-methylation of histone H3 Lys4 (H3K4me3). Although H3K4me3 is widely associated with gene expression, the effects of CFP1 loss vary, suggesting additional chromatin factors contribute to context dependent effects. Using a proteomics approach, we identified CFP1 associated proteins and an unexpected direct link between Caenorhabditis elegans CFP-1 and an Rpd3/Sin3 small (SIN3S) histone deacetylase complex. Supporting a functional connection, we find that mutants of COMPASS and SIN3 complex components genetically interact and have similar phenotypic defects including misregulation of common genes. CFP-1 directly binds SIN-3 through a region including the conserved PAH1 domain and recruits SIN-3 and the HDA-1/HDAC subunit to H3K4me3 enriched promoters. Our results reveal a novel role for CFP-1 in mediating interaction between SET1/COMPASS and a Sin3S HDAC complex at promoters.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos Multiproteicos/fisiología , Complejo Correpresor Histona Desacetilasa y Sin3/metabolismo , Transactivadores/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Embrión no Mamífero , N-Metiltransferasa de Histona-Lisina/fisiología , Complejos Multiproteicos/metabolismo , Unión Proteica
10.
Cells ; 8(4)2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974922

RESUMEN

Cellular adaptation to environmental stress relies on a wide range of tightly controlled regulatory mechanisms, including transcription. Changes in chromatin structure and organization accompany the transcriptional response to stress, and in some cases, can impart memory of stress exposure to subsequent generations through mechanisms of epigenetic inheritance. In the budding yeast Saccharomyces cerevisiae, histone post-translational modifications, and in particular histone methylation, have been shown to confer transcriptional memory of exposure to environmental stress conditions through mitotic divisions. Recent evidence from Caenorhabditis elegans also implicates histone methylation in transgenerational inheritance of stress responses, suggesting a more widely conserved role in epigenetic memory.


Asunto(s)
Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Animales , Caenorhabditis elegans/genética , Epigénesis Genética , Células HeLa , Humanos , Patrón de Herencia , Metilación , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética
11.
Cell Mol Life Sci ; 72(19): 3599-620, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26043973

RESUMEN

Germ cells must transmit genetic information across generations, and produce gametes while also maintaining the potential to form all cell types after fertilization. Preventing the activation of somatic programs is, therefore, crucial to the maintenance of germ cell identity. Studies in Caenorhabditis elegans, Drosophila melanogaster, and mouse have revealed both similarities and differences in how somatic gene expression is repressed in germ cells, thereby preventing their conversion into somatic tissues. This review will focus on recent developments in our understanding of how global or gene-specific transcriptional repression, chromatin regulation, and translational repression operate in the germline to maintain germ cell identity and repress somatic differentiation programs.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Cromatina/fisiología , Metilación de ADN , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Germinativas/citología , Modelos Biológicos , Animales , Caenorhabditis elegans , Drosophila , Proteínas de Drosophila/metabolismo , Humanos , Ratones , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores , ARN Polimerasa II/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Factores de Transcripción SOXF/metabolismo , Especificidad de la Especie
12.
EMBO Rep ; 16(3): 332-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25652260

RESUMEN

The accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the Unfolded Protein Response (UPR(ER)) to restore ER homeostasis. The AAA(+) ATPase p97/CDC-48 plays key roles in ER stress by promoting both ER protein degradation and transcription of UPR(ER) genes. Although the mechanisms associated with protein degradation are now well established, the molecular events involved in the regulation of gene transcription by p97/CDC-48 remain unclear. Using a reporter-based genome-wide RNAi screen in combination with quantitative proteomic analysis in Caenorhabditis elegans, we have identified RUVB-2, a AAA(+) ATPase, as a novel repressor of a subset of UPR(ER) genes. We show that degradation of RUVB-2 by CDC-48 enhances expression of ER stress response genes through an XBP1-dependent mechanism. The functional interplay between CDC-48 and RUVB-2 in controlling transcription of select UPR(ER) genes appears conserved in human cells. Together, these results describe a novel role for p97/CDC-48, whereby its role in protein degradation is integrated with its role in regulating expression of ER stress response genes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Transducción de Señal/genética , Transcripción Genética/fisiología , Respuesta de Proteína Desplegada/fisiología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Estrés del Retículo Endoplásmico/genética , Proteómica/métodos , Interferencia de ARN , Proteínas Represoras/metabolismo , Proteína que Contiene Valosina
13.
Cell Rep ; 9(2): 443-50, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25310986

RESUMEN

Histone H3 Lys 4 methylation (H3K4me) is deposited by the conserved SET1/MLL methyltransferases acting in multiprotein complexes, including Ash2 and Wdr5. Although individual subunits contribute to complex activity, how they influence gene expression in specific tissues remains largely unknown. In Caenorhabditis elegans, SET-2/SET1, WDR-5.1, and ASH-2 are differentially required for germline H3K4 methylation. Using expression profiling on germlines from animals lacking set-2, ash-2, or wdr-5.1, we show that these subunits play unique as well as redundant functions in order to promote expression of germline genes and repress somatic genes. Furthermore, we show that in set-2- and wdr-5.1-deficient germlines, somatic gene misexpression is associated with conversion of germ cells into somatic cells and that nuclear RNAi acts in parallel with SET-2 and WDR-5.1 to maintain germline identity. These findings uncover a unique role for SET-2 and WDR-5.1 in preserving germline pluripotency and underline the complexity of the cellular network regulating this process.


Asunto(s)
Células Madre Adultas/metabolismo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Adultas/citología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Células Madre Pluripotentes/citología , Interferencia de ARN
14.
Proc Natl Acad Sci U S A ; 111(16): 5956-61, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24715729

RESUMEN

Cellular adaptation to environmental changes and stress relies on a wide range of regulatory mechanisms that are tightly controlled at several levels, including transcription. Chromatin structure and chromatin binding proteins are important factors contributing to the transcriptional response to stress. However, it remains largely unknown to what extent specific chromatin factors influence the response to distinct forms of stress in a developmental context. One of the best characterized stress response pathways is the unfolded protein response (UPR), which is activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). Here, we show that Caenorhabditis elegans heterochromatin protein like-2 (HPL-2), the homolog of heterochromatin protein 1 (HP1), down-regulates the UPR in the intestine. Inactivation of HPL-2 results in an enhanced resistance to ER stress dependent on the X-box binding protein 1 (XBP-1)/inositol requiring enzyme 1 branch of the UPR and the closely related process of autophagy. Increased resistance to ER stress in animals lacking HPL-2 is associated with increased basal levels of XBP-1 activation and ER chaperone expression under physiological conditions, which may in turn activate an adaptive response known as ER hormesis. HPL-2 expression in intestinal cells is sufficient to rescue stress resistance, whereas expression in neuronal cells negatively influenced the ER stress response through a cell-nonautonomous mechanism. We further show that the retinoblastoma protein homolog LIN-35 and the LIN-13 zinc finger protein act in the same pathway as HPL-2 to limit the ER stress response. Altogether, our results point to multiple functions for HP1 in different cell types to maintain ER homeostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Retículo Endoplásmico/metabolismo , Hormesis , Respuesta de Proteína Desplegada , Animales , Autofagia , Homólogo de la Proteína Chromobox 5 , Citoprotección , Estrés del Retículo Endoplásmico , Intestinos/citología , Mutación/genética , Neuronas/citología , Neuronas/metabolismo , Proteína de Retinoblastoma/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Dedos de Zinc
15.
Epigenetics ; 9(1): 37-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162759

RESUMEN

RNA silencing processes use exogenous or endogenous RNA molecules to specifically and robustly regulate gene expression. In C. elegans, initial mechanistic descriptions of the different silencing processes focused on posttranscriptional regulation. In this review, we discuss recent work showing that, in this model organism, RNA silencing also controls the transcription of target genes by inducing heterochromatin formation. Specifically, it has been shown that ribonucleoprotein complexes containing small RNAs, either processed from exogenous dsRNA or synthesized from the genome itself, and proteins of the Argonaute family, mediate the deposition of repressive histone marks at the targeted loci. Interestingly, the accumulation of repressive marks is required for the inheritance of the silencing effect and the establishment of an epigenetic memory that discriminates self- from non-self-RNAs.


Asunto(s)
Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/fisiología , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Silenciador del Gen , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
Brief Funct Genomics ; 13(3): 223-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24326118

RESUMEN

The precise developmental map of the Caenorhabditis elegans cell lineage, as well as a complete genome sequence and feasibility of genetic manipulation make this nematode species highly attractive to study the role of epigenetics during development. Genetic dissection of phenotypical traits, such as formation of egg-laying organs or starvation-resistant dauer larvae, has illustrated how chromatin modifiers may regulate specific cell-fate decisions and behavioral programs. Moreover, the transparent body of C. elegans facilitates non-invasive microscopy to study tissue-specific accumulation of heterochromatin at the nuclear periphery. We also review here recent findings on how small RNA molecules contribute to epigenetic control of gene expression that can be propagated for several generations and eventually determine longevity.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Desarrollo Embrionario/genética , Epigénesis Genética , Animales , Cromatina/metabolismo , Longevidad/genética
17.
Cell ; 154(5): 1010-1022, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993094

RESUMEN

Most eukaryotic cells express small regulatory RNAs. The purpose of one class, the somatic endogenous siRNAs (endo-siRNAs), remains unclear. Here, we show that the endo-siRNA pathway promotes odor adaptation in C. elegans AWC olfactory neurons. In adaptation, the nuclear Argonaute NRDE-3, which acts in AWC, is loaded with siRNAs targeting odr-1, a gene whose downregulation is required for adaptation. Concomitant with increased odr-1 siRNA in AWC, we observe increased binding of the HP1 homolog HPL-2 at the odr-1 locus in AWC and reduced odr-1 mRNA in adapted animals. Phosphorylation of HPL-2, an in vitro substrate of the EGL-4 kinase that promotes adaption, is necessary and sufficient for behavioral adaptation. Thus, environmental stimulation amplifies an endo-siRNA negative feedback loop to dynamically repress cognate gene expression and shape behavior. This class of siRNA may act broadly as a rheostat allowing prolonged stimulation to dampen gene expression and promote cellular memory formation. PAPERFLICK:


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Regulación hacia Abajo , Guanilato Ciclasa/genética , Interferencia de ARN , Células Receptoras Sensoriales/metabolismo , Adaptación Fisiológica , Animales , Butanonas/química , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Odorantes , Fosforilación , ARN de Helminto/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo
18.
Mol Cell Biol ; 32(2): 251-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083954

RESUMEN

Linker histone (H1) and heterochromatin protein 1 (HP1) are essential components of heterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark of vertebrate histone H1 is specifically recognized by the chromodomain of HP1. However, the exact biological role of linker histone binding to HP1 has not been determined. Here, we investigate the function of the Caenorhabditis elegans H1 variant HIS-24 and the HP1-like proteins HPL-1 and HPL-2 in the cooperative transcriptional regulation of immune-relevant genes. We provide the first evidence that HPL-1 interacts with HIS-24 monomethylated at lysine 14 (HIS-24K14me1) and associates in vivo with promoters of genes involved in antimicrobial response. We also report an increase in overall cellular levels and alterations in the distribution of HIS-24K14me1 after infection with pathogenic bacteria. HIS-24K14me1 localization changes from being mostly nuclear to both nuclear and cytoplasmic in the intestinal cells of infected animals. Our results highlight an antimicrobial role of HIS-24K14me1 and suggest a functional link between epigenetic regulation by an HP1/H1 complex and the innate immune system in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Inmunidad Innata , Animales , Bacillus thuringiensis/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Interacciones Huésped-Patógeno , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Activación Transcripcional
19.
Genome Biol ; 12(12): R123, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22185090

RESUMEN

BACKGROUND: Heterochromatin protein 1 (HP1) family proteins have a well-characterized role in heterochromatin packaging and gene regulation. Their function in organismal development, however, is less well understood. Here we used genome-wide expression profiling to assess novel functions of the Caenorhabditis elegans HP1 homolog HPL-2 at specific developmental stages. RESULTS: We show that HPL-2 regulates the expression of germline genes, extracellular matrix components and genes involved in lipid metabolism. Comparison of our expression data with HPL-2 ChIP-on-chip profiles reveals that a significant number of genes up- and down-regulated in the absence of HPL-2 are bound by HPL-2. Germline genes are specifically up-regulated in hpl-2 mutants, consistent with the function of HPL-2 as a repressor of ectopic germ cell fate. In addition, microarray results and phenotypic analysis suggest that HPL-2 regulates the dauer developmental decision, a striking example of phenotypic plasticity in which environmental conditions determine developmental fate. HPL-2 acts in dauer at least partly through modulation of daf-2/IIS and TGF-ß signaling pathways, major determinants of the dauer program. hpl-2 mutants also show increased longevity and altered lipid metabolism, hallmarks of the long-lived, stress resistant dauers. CONCLUSIONS: Our results suggest that the worm HP1 homologue HPL-2 may coordinately regulate dauer diapause, longevity and lipid metabolism, three processes dependent on developmental input and environmental conditions. Our findings are of general interest as a paradigm of how chromatin factors can both stabilize development by buffering environmental variation, and guide the organism through remodeling events that require plasticity of cell fate regulation.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Regulación del Desarrollo de la Expresión Génica , Metabolismo de los Lípidos/genética , Longevidad/genética , Proteínas Represoras/genética , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ambiente , Perfilación de la Expresión Génica , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Organismos Hermafroditas , Heterocromatina/genética , Masculino , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
20.
Genesis ; 49(8): 647-61, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538806

RESUMEN

Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Epigenómica , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Metilación , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...