Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39256215

RESUMEN

AIM: The recently introduced Long-Axial-Field-of-View (LAFOV) PET-CT scanners allow for the first-time whole-body dynamic- and parametric imaging. Primary aim of this study was the comparison of direct and indirect Patlak imaging as well as the comparison of different time frames for Patlak calculation with the LAFOV PET-CT in oncological patients. Secondary aims of the study were lesion detectability and comparison of Patlak analysis with a two-tissue-compartment model (2TCM). METHODOLOGY: 50 oncological patients with 346 tumor lesions were enrolled in the study. All patients underwent [18F]FDG PET/CT (skull to upper thigh). Here, the Image-Derived-Input-Function) (IDIF) from the descending aorta was used as the exclusive input function. Four sets of images have been reviewed visually and evaluated quantitatively using the target-to-background (TBR) and contrast-to-noise ratio (CNR): short-time (30 min)-direct (STD) Patlak Ki, short-time (30 min)-indirect (STI) Patlak Ki, long-time (59.25 min)-indirect (LTI) Patlak Ki, and 50-60 min SUV (sumSUV). VOI-based 2TCM was used for the evaluation of tumor lesions and normal tissues and compared with the results of Patlak model. RESULTS: No significant differences were observed between the four approaches regarding the number of tumor lesions. However, we found three discordant results: a true positive liver lesion in all Patlak Ki images, a false positive liver lesion delineated only in LTI Ki which was a hemangioma according to MRI and a true negative example in a patient with an atelectasis next to a lung tumor. STD, STI and LTI Ki images had superior TBR in comparison with sumSUV images (2.9-, 3.3- and 4.3-fold higher respectively). TBR of LTI Ki were significantly higher than STD Ki. VOI-based k3 showed a 21-fold higher TBR than sumSUV. Parameters of different models vary in their differential capability between tumor lesions and normal tissue like Patlak Ki which was better in normal lung and 2TCM k3 which was better in normal liver. 2TCM Ki revealed the highest correlation (r = 0.95) with the LTI Patlak Ki in tumor lesions group and demonstrated the highest correlation with the STD Patlak Ki in all tissues group and normal tissues group (r = 0.93 and r = 0.74 respectively). CONCLUSIONS: Dynamic [18F]-FDG with the new LAFOV PET/CT scanner produces Patlak Ki images with better lesion contrast than SUV images, but does not increase the lesion detection rate. The time window used for Patlak imaging plays a more important role than the direct or indirect method. A combination of different models, like Patlak and 2TCM may be helpful in parametric imaging to obtain the best TBR in the whole body in future.

2.
Semin Nucl Med ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38851935

RESUMEN

Recently developed long axial field of view (LAFOV) PET-CT scanners, including total body scanners, are already in use in a few centers worldwide. These systems have some major advantages over standard axial field of view (SAFOV) PET-CT scanners, mainly due to up to 20 times higher sensitivity and therefore improved lesion detectability. Other advantages are the reduction of the PET acquisition time for a static whole-body measurement, the reduction of the administered radiotracer dose, and the ability to perform delayed scans with good image quality, which is important for imaging radionuclides with long half-lives and pharmaceuticals with long biodistribution times, such as 89Zr-labeled antibodies. The reduction of the applied tracer dose leads to less radiation exposure and may facilitate longitudinal studies, especially in oncological patients, for the evaluation of therapy. The reduction in acquisition time for a static whole body (WB) study allows a markedly higher patient throughput. Furthermore, LAFOV PET-CT scanners enable for the first-time WB dynamic PET scanning and WB parametric imaging with an improved image quality due to increased sensitivity and time resolution. WB tracer kinetics is of particular interest for the characterization of novel radiopharmaceuticals and for a better biological characterization of cancer diseases, as well as for a more accurate assessment of the response to new targeted therapies. Further technological developments based on artificial intelligence (AI) approaches are underway and may in the future allow CT-less attenuation correction or ultralow dose CT for attenuation correction as well as segmentation algorithms for the evaluation of total metabolic tumor volume. The aim of this review is to present dedicated PET acquisition protocols for oncological studies with LAFOV scanners, including static and dynamic acquisition as well as parametric scans, and to present literature data to date on this topic.

3.
Eur J Nucl Med Mol Imaging ; 51(8): 2293-2307, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456971

RESUMEN

PURPOSE: Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [18F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group has recently demonstrated the feasibility of automated, volumetric assessment of bone marrow (BM) metabolic activity on PET/CT using a novel artificial intelligence (AI)-based tool. Accordingly, the aim of the current study is to investigate the prognostic role of whole-body calculations of BM metabolism in patients with newly diagnosed MM using this AI tool. MATERIALS AND METHODS: Forty-four, previously untreated MM patients underwent whole-body [18F]FDG PET/CT. Automated PET/CT image segmentation and volumetric quantification of BM metabolism were based on an initial CT-based segmentation of the skeleton, its transfer to the standardized uptake value (SUV) PET images, subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, ten different uptake thresholds (AI approaches), based on reference organs or absolute SUV values, were applied for definition of pathological tracer uptake and subsequent calculation of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG). Correlation analysis was performed between the automated PET values and histopathological results of the BM as well as patients' progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curve analysis was used to investigate the discrimination performance of MTV and TLG for prediction of 2-year PFS. The prognostic performance of the new Italian Myeloma criteria for PET Use (IMPeTUs) was also investigated. RESULTS: Median follow-up [95% CI] of the patient cohort was 110 months [105-123 months]. AI-based BM segmentation and calculation of MTV and TLG were feasible in all patients. A significant, positive, moderate correlation was observed between the automated quantitative whole-body PET/CT parameters, MTV and TLG, and BM plasma cell infiltration for all ten [18F]FDG uptake thresholds. With regard to PFS, univariable analysis for both MTV and TLG predicted patient outcome reasonably well for all AI approaches. Adjusting for cytogenetic abnormalities and BM plasma cell infiltration rate, multivariable analysis also showed prognostic significance for high MTV, which defined pathological [18F]FDG uptake in the BM via the liver. In terms of OS, univariable and multivariable analysis showed that whole-body MTV, again mainly using liver uptake as reference, was significantly associated with shorter survival. In line with these findings, ROC curve analysis showed that MTV and TLG, assessed using liver-based cut-offs, could predict 2-year PFS rates. The application of IMPeTUs showed that the number of focal hypermetabolic BM lesions and extramedullary disease had an adverse effect on PFS. CONCLUSIONS: The AI-based, whole-body calculations of BM metabolism via the parameters MTV and TLG not only correlate with the degree of BM plasma cell infiltration, but also predict patient survival in MM. In particular, the parameter MTV, using the liver uptake as reference for BM segmentation, provides solid prognostic information for disease progression. In addition to highlighting the prognostic significance of automated, global volumetric estimation of metabolic tumor burden, these data open up new perspectives towards solving the complex problem of interpreting PET scans in MM with a simple, fast, and robust method that is not affected by operator-dependent interventions.


Asunto(s)
Inteligencia Artificial , Médula Ósea , Fluorodesoxiglucosa F18 , Mieloma Múltiple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Médula Ósea/diagnóstico por imagen , Médula Ósea/metabolismo , Anciano , Pronóstico , Adulto , Anciano de 80 o más Años , Análisis de Supervivencia , Procesamiento de Imagen Asistido por Computador
4.
Eur J Nucl Med Mol Imaging ; 51(7): 2137-2150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38286936

RESUMEN

AIM: In addition to significant improvements in sensitivity and image quality, the recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has enabled dynamic whole-body imaging for the first time. We aim herein to determine an appropriate acquisition time range for static low-dose [18F]PSMA-1007 PET imaging and to investigate the whole-body pharmacokinetics of [18F]PSMA-1007 by dynamic PET with the LAFOV Biograph Vision Quadra PET/CT in a group of prostate cancer patients. METHODOLOGY: In total, 38 prostate cancer patients were enrolled in the analysis for staging or re-staging purposes. Thirty-four patients underwent dynamic whole-body PET/CT (60 min) followed by static whole-body PET/CT and four patients underwent static whole-body PET/CT only. The activity applied was 2 MBq/kg [18F]PSMA-1007. The static PET images of 10-min duration (PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were made between the different reconstructed scan times in terms of lesion detection rate and image quality based on SUV calculations of tumor lesions and the spleen, which served as background. Analysis of the dynamic PET/CT data was based on a two-tissue compartment model using an image-derived input function obtained from the descending aorta. RESULTS: Analysis of lesion detection rate showed no significant differences when reducing PET acquisitions from 10 up to 5 min. In particular, a total of 169 lesions were counted with PET-10, and the corresponding lesion detection rates (95% CI for the 90% quantile of the differences in tumor lesions) for shorter acquisitions were 100% (169/169) for PET-8 (95% CI: 0-0), 98.8% (167/169) for PET-6 (95% CI: 0-1), 95.9% (162/169) for PET-5 (95% CI: 0-3), 91.7% (155/169) for PET-4 (95% CI: 1-2), and 85.2% (144/169) for PET-2 (95% CI: 1-6). With the exception of PET-2, the differences observed between PET-10 and the other shorter acquisition protocols would have no impact on any patient in terms of clinical management. Objective evaluation of PET/CT image quality showed no significant decrease in tumor-to-background ratio (TBR) with shorter acquisition times, despite a gradual decrease in signal-to-noise ratio (SNR) in the spleen. Whole-body quantitative [18F]PSMA-1007 pharmacokinetic analysis acquired with full dynamic PET scanning was feasible in all patients. Two-tissue compartment modeling revealed significantly higher values for the parameter k3 in tumor lesions and parotid gland compared to liver and spleen, reflecting a higher specific tracer binding to the PSMA molecule and internalization rate in these tissues, a finding also supported by the respective time-activity curves. Furthermore, correlation analysis demonstrated a significantly strong positive correlation (r = 0.72) between SUV and k3 in tumor lesions. CONCLUSIONS: In prostate cancer, low-dose (2 MBq/kg) [18F]PSMA-1007 LAFOV PET/CT can reduce static scan time by 50% without significantly compromising lesion detection rate and objective image quality. In addition, dynamic PET can elucidate molecular pathways related to the physiology of [18F]PSMA-1007 in both tumor lesions and normal organs at the whole-body level. These findings unfold many of the potentials of the new LAFOV PET/CT technology in the field of PSMA-based diagnosis and theranostics of prostate cancer.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Imagen de Cuerpo Entero , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Anciano , Persona de Mediana Edad , Niacinamida/análogos & derivados , Niacinamida/farmacocinética , Oligopéptidos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Anciano de 80 o más Años , Dosis de Radiación , Radiofármacos/farmacocinética
5.
Eur J Nucl Med Mol Imaging ; 50(12): 3697-3708, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37493665

RESUMEN

PURPOSE: [18F]FDG PET/CT is an imaging modality of high performance in multiple myeloma (MM). Nevertheless, the inter-observer reproducibility in PET/CT scan interpretation may be hampered by the different patterns of bone marrow (BM) infiltration in the disease. Although many approaches have been recently developed to address the issue of standardization, none can yet be considered a standard method in the interpretation of PET/CT. We herein aim to validate a novel three-dimensional deep learning-based tool on PET/CT images for automated assessment of the intensity of BM metabolism in MM patients. MATERIALS AND METHODS: Whole-body [18F]FDG PET/CT scans of 35 consecutive, previously untreated MM patients were studied. All patients were investigated in the context of an open-label, multicenter, randomized, active-controlled, phase 3 trial (GMMG-HD7). Qualitative (visual) analysis classified the PET/CT scans into three groups based on the presence and number of focal [18F]FDG-avid lesions as well as the degree of diffuse [18F]FDG uptake in the BM. The proposed automated method for BM metabolism assessment is based on an initial CT-based segmentation of the skeleton, its transfer to the SUV PET images, the subsequent application of different SUV thresholds, and refinement of the resulting regions using postprocessing. In the present analysis, six different SUV thresholds (Approaches 1-6) were applied for the definition of pathological tracer uptake in the skeleton [Approach 1: liver SUVmedian × 1.1 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 2: liver SUVmedian × 1.5 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 3: liver SUVmedian × 2 (axial skeleton), gluteal muscles SUVmedian × 4 (extremities). Approach 4: ≥ 2.5. Approach 5: ≥ 2.5 (axial skeleton), ≥ 2.0 (extremities). Approach 6: SUVmax liver]. Using the resulting masks, subsequent calculations of the whole-body metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in each patient were performed. A correlation analysis was performed between the automated PET values and the results of the visual PET/CT analysis as well as the histopathological, cytogenetical, and clinical data of the patients. RESULTS: BM segmentation and calculation of MTV and TLG after the application of the deep learning tool were feasible in all patients. A significant positive correlation (p < 0.05) was observed between the results of the visual analysis of the PET/CT scans for the three patient groups and the MTV and TLG values after the employment of all six [18F]FDG uptake thresholds. In addition, there were significant differences between the three patient groups with regard to their MTV and TLG values for all applied thresholds of pathological tracer uptake. Furthermore, we could demonstrate a significant, moderate, positive correlation of BM plasma cell infiltration and plasma levels of ß2-microglobulin with the automated quantitative PET/CT parameters MTV and TLG after utilization of Approaches 1, 2, 4, and 5. CONCLUSIONS: The automated, volumetric, whole-body PET/CT assessment of the BM metabolic activity in MM is feasible with the herein applied method and correlates with clinically relevant parameters in the disease. This methodology offers a potentially reliable tool in the direction of optimization and standardization of PET/CT interpretation in MM. Based on the present promising findings, the deep learning-based approach will be further evaluated in future prospective studies with larger patient cohorts.


Asunto(s)
Mieloma Múltiple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Inteligencia Artificial , Médula Ósea/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Glucólisis , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/patología , Pronóstico , Radiofármacos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Carga Tumoral
6.
Eur J Nucl Med Mol Imaging ; 50(11): 3354-3362, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37079129

RESUMEN

Long axial field of view (LAFOV) PET-CT scanners have been recently developed and are already in clinical use in few centers worldwide. Although still limited, the hitherto acquired experience with these novel systems highlights an increased sensitivity as their main advantage, which results in an increased lesion detectability. This attribute, alternatively, allows a reduction in PET acquisition time and/or administered radiotracer dose, while it renders delayed scanning of satisfying diagnostic accuracy possible. Another potential advantage of the new generation scanners is CT-less approaches for attenuation correction with the impact of marked reduction of radiation exposure, which may in turn lead to greater acceptance of longitudinal PET studies in the oncological setting. Further, the possibility for the first time of whole-body dynamic imaging, improved compartment modeling, and whole-body parametric imaging represent unique characteristics of the LAFOV PET-CT scanners. On the other hand, the advent of the novel LAFOV scanners is linked to specific challenges, such as the high purchase price and issues related to logistics and their optimal operation in a nuclear medicine department. Moreover, with regard to its research applications in oncology, the full potential of the new scanners can only be reached if different radiopharmaceuticals, both short and long-lived ones, as well as novel tracers, are available for use, which would, in turn, require the appropriate infrastructure in the area of radiochemistry. Although the novel LAFOV scanners are not yet widely used, this development represents an important step in the evolution of molecular imaging. This review presents the advantages and challenges of LAFOV PET-CT imaging for oncological applications with respect to static and dynamic acquisition protocols as well as to new tracers, while it provides an overview of the literature in the field.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Imagen de Cuerpo Entero
7.
Eur J Nucl Med Mol Imaging ; 50(4): 1158-1167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36474125

RESUMEN

AIM: The recent introduction of long axial field-of-view (LAFOV) PET/CT scanners has yielded very promising results regarding image quality and sensitivity in oncological patients. We, herein, aim to determine an appropriate acquisition time range for the new long axial field of view Biograph Vision Quadra PET/CT (Siemens Healthcare) using low dose [18F]FDG activity in a group of melanoma patients. METHODOLOGY: Forty-nine melanoma patients were enrolled in the study. All patients underwent total body PET/CT from the top of the head through the feet in two bed positions (field-of-view 106 cm) after i.v. injection of 2.0 MBq/kg [18F]FDG. The PET images of the first bed position (head to upper thigh; PET-10) were reconstructed and further split into 8-min (PET-8), 6-min (PET-6), 5-min (PET-5), 4-min (PET-4), and 2-min (PET-2) duration groups. Comparisons were performed between the different reconstructed scan times with regard to the visual evaluation of the PET/CT scans using the PET-10 images as reference and by calculating the 95%-CI for the differences between different time acquisitions. Moreover, objective evaluation of PET/CT image quality was performed based on SUV calculations of tumor lesions and background, leading to calculation of liver signal-to-noise ratio (SNR), and tumor-to-background ratio (TBR). RESULTS: A total of 60 scans were evaluated. Concerning visual analysis, 49/60 (81.7%) PET-10 scans were pathological, while the respective frequencies were 49/60 (81.7%) for PET-8 (95%-CI: - 0.0602-0.0602), 49/60 (81.7%) for PET-6 (95%-CI: - 0.0602-0.0602), 48/60 (80%) for PET-5 (95%-CI: - 0.0445-0.0886), 46/60 (76.7%) for PET-4 (95%-CI: - 0.0132-0.1370), and 45/60 (75%) for PET-2 (95%-CI: 0.0025-0.1593). In 18 PET-10 scans, the extent of metastatic involvement was very large, rendering the accurate calculation of [18F]FDG-avid tumor lesions very complicated. In the remaining 42 PET-10 scans, for which the exact calculation of tumor lesions was feasible, a total of 119 tumor lesions were counted, and the respective lesion detection rates for shorter acquisitions were as follows: 97.5% (116/119) for PET-8 (95%-CI: 0-1), 95.0% (113/119) for PET-6 (95%-CI: 0-1), 89.9% (107/119) for PET-5 (95%-CI: 0-2), 83.2% (99/119) for PET-4 (95%-CI: 1-2), and 73.9% (88/119) for PET-2 (95%-CI: 2-4). With regard to objective image quality evaluations, as a general trend, the reduction of acquisition time was associated with a decrease of liver SNR and a decrease of TBR, although in lesion-based analysis the change in TBR and tumor SUVmean values was non-significant up to 6 and 5 min acquisitions, respectively. CONCLUSIONS: In melanoma, low-dose LAFOV PET/CT imaging is feasible and can reduce the total scan time from head to upper thigh up to 5 min providing comparable diagnostic data to standard lengths of acquisition. This may have significant implications for the diagnostic work-up of patients with melanoma, given the need for true whole-body imaging in this type of cancer.


Asunto(s)
Melanoma , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones/métodos , Melanoma/diagnóstico por imagen , Factores de Tiempo
8.
Artículo en Inglés | MEDLINE | ID: mdl-37015600

RESUMEN

Metastatic Melanoma (MM) is an aggressive type of cancer which produces metastases throughout the body with very poor survival rates. Recent advances in immunotherapy have shown promising results for controlling disease's progression. Due to the often rapid progression, fast and accurate diagnosis and treatment response assessment is vital for the whole patient management. These procedures prerequisite accurate, whole-body tumor identification. This can be offered by the imaging modality Positron Emission Tomography (PET)/Computed Tomography (CT) with the radiotracer F 18-Fluorodeoxyglucose (FDG). However, manual segmentation of PET/CT images is a very time-consuming and labor intensive procedure that requires expert knowledge. Most of the previously published segmentation techniques focus on a specific type of tumor or part of the body and require a great amount of manually labeled data, which is, however, difficult for MM. Multimodal analysis of PET/CT is also crucial because FDG-PET contains only the functional information of tumors which can be complemented by the anatomical information of CT. In this paper, we propose a whole-body segmentation framework capable of efficiently identifying the highly heterogeneous tumor lesions of MM from the whole-body 3D FDG-PET/CT images. The proposed decision support system begins with an Ensemble Unsupervised Segmentation of regions of high FDG-uptake based on Fuzzy C-means and a custom region growing algorithm. Then, a region classification model based on radiomics features and Neural Networks classifies these regions as tumors or not. Experimental results showed high performance in the identification of MM lesions with Sensitivity 83.68%, Specificity 91.82%, F1-score 75.42%, AUC 94.16% and Balanced accuracy 87.75% which were also supported by the public dataset evaluation.

9.
Semin Nucl Med ; 52(3): 312-329, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34809877

RESUMEN

Nuclear medicine imaging modalities, and in particular positron emission tomography (PET), provide functional images that demonstrate the mean radioactivity distribution at a defined point in time. With the help of mathematical model's, it is possible to depict isolated parameters of the radiotracers' pharmacokinetics and to visualize them. These so called parametric images add a new dimension to the existing conventional PET images and provide more detailed information about the tracer distribution over time and space. Prerequisite for the calculation of parametric images, which reflect specific pharmacokinetic parameters, is the dynamic PET (dPET) data acquisition. Hitherto, PET parametric imaging has mainly found use for research purposes. However, it has not been yet implemented into clinical routine, since it is more time-consuming, it requires a complicated analysis and still lacks a clear benefit over conventional PET imaging. However, the recent introduction of new PET-CT scanners with an ultralong field of view, which allow a faster data acquisition and are associated with higher sensitivity, as well as the development of more sophisticated evaluation software packages will probably lead to a renaissance of dPET and parametric maps even of the whole body. The implementation of dPET imaging in daily routine with appropriate acquisition protocols, as well as the calculation, interpretation and potential clinical applications of parametric images will be discussed in this review article.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos
10.
Cancers (Basel) ; 13(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34680319

RESUMEN

Longitudinal whole-body PET-CT scans with F-18-fluorodeoxyglucose (18F-FDG) in patients suffering from metastatic melanoma were analyzed and the tracer distribution in patients was compared with that of healthy controls. Nineteen patients with metastatic melanoma were scanned before, after two and after four cycles of treatment with PD-1 inhibitors (pembrolizumab, nivolumab) applied as monotherapy or as combination treatment with ipilimumab. For comparison eight healthy controls were analyzed. As quantitative measures for the comparison between controls and patients, the nonlinear fractal dimension (FD) and multifractal spectrum (MFS) were calculated from the digitized PET-CT scans. The FD and MFS measures, which capture the dispersion of the tracer in the body, decreased with disease progression, since the tracer particles tended to accumulate around metastatic sites in patients, while the measures increased when the patients' clinical condition ameliorate. The MFS measure gave better predictions and were consistent with the PET Response Evaluation Criteria for Immunotherapy (PERCIMT) in 81% of the cases, while FD agreed in 77% of all cases. These results agree, qualitatively, with a previous study of our group when treatment with ipilimumab monotherapy was considered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA