Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 72(Pt 1): 2-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26894529

RESUMEN

Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.


Asunto(s)
Cristalización/instrumentación , Cristalografía por Rayos X/instrumentación , Animales , Cristalización/economía , Cristalización/métodos , Cristalografía por Rayos X/economía , Cristalografía por Rayos X/métodos , Recolección de Datos , Difusión , Diseño de Equipo , Humanos , Temperatura , Volatilización
2.
Pest Manag Sci ; 68(4): 618-28, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22045547

RESUMEN

BACKGROUND: The herbicide sulfonylurea (SU) belongs to one of the most important class of herbicides worldwide. It is well known for its ecofriendly, extreme low toxicity towards mammals and ultralow dosage application. The original inventor, G Levitt, set out structure-activity relationship (SAR) guidelines for SU structural design to attain superhigh bioactivity. A new approach to SU molecular design has been developed. RESULTS: After the analysis of scores of SU products by X-ray diffraction methodology and after greenhouse herbicidal screening of 900 novel SU structures synthesised in the authors' laboratory, it was found that several SU structures containing a monosubstituted pyrimidine moiety retain excellent herbicidal characteristics, which has led to partial revision of the Levitt guidelines. CONCLUSIONS: Among the novel SU molecules, monosulfuron and monosulfuron-ester have been developed into two new herbicides that have been officially approved for field application and applied in millet and wheat fields in China. A systematic structural study of the new substrate-target complex and the relative mode of action in comparison with conventional SU has been carried out. A new mode of action has been postulated.


Asunto(s)
Herbicidas/química , Herbicidas/farmacología , Compuestos de Sulfonilurea/química , Compuestos de Sulfonilurea/farmacología , Brassica/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...