Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1419424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206367

RESUMEN

Introduction: Evidence suggests that the dietary intake of Candida tropicalisZD-3 (ZD-3) has various health benefits, but the treatment mechanisms and effects remain unclear. The aim of this study investigates the effect of ZD-3 on reducing fat deposition in broilers and the underlying mechanism. Methods: 180 one-day-old, yellow-feathered broilers were randomly divided into three groups: control (CON) group fed a basal diet, an active Candida tropicalis ZD-3 (ZD) group supplemented with ZD, and a heat-inactivated Candida tropicalis ZD-3 (HZD) group supplemented with HZD. The experiment lasted for 28 d. Results: The ZD and HZD treatments significantly reduced the abdominal fat index (p < 0.05), decreased TG levels in serum and liver (p < 0.05), altered the ileal microbial composition by reducing the Firmicutes to Bacteroidetes (F/B) ratio. Additionally, the ZD and HZD treatments reduced liver cholesterol by decreasing ileal FXR-FGF19 signaling and increasing liver FXR-SHP signaling (p < 0.05). The ZD and HZD treatments also changed liver PC and TG classes lipid composition, regulating liver lipid metabolism by promoting TG degradation and modulating the signal transduction of the cell membrane. Discussion: Overall, ZD-3 was effective in improving lipid metabolism in broilers by regulating the ileal microbial composition and BAs enterohepatic circulation. This study provides a theoretical basis for the development and application of ZD-3 for the regulation of lipid metabolism in broilers.

2.
Antioxidants (Basel) ; 13(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39199187

RESUMEN

We aimed to investigate the role of capsaicin (CAP) in modulating lipopolysaccharide (LPS)-induced hepatic and intestinal inflammation, oxidative stress, and its colonic microflora in mice. Thirty healthy male Kunming mice with similar body weights were randomly assigned to three groups: the control group (CON), the LPS group, and the CAP group, with ten mice in each group. The CON and the LPS groups received a daily dose of normal saline, respectively, while the CAP group received an equivalent dose of CAP. On the 28th day of the experiment, the LPS and the CAP groups were intraperitoneally injected with LPS, while the CON group was injected with an equal volume of normal saline. The results lead to the following conclusions. Compared to the LPS group, CAP improved the loss of hepatic lobular structure and significantly increased the duodenal villus length and ratio of villus length to crypt depth. CAP increased hepatic and colon interleukin-10 (IL-10) and decreased IL-6, IL-1ß, and tumor necrosis factor (TNF-α) levels. CAP also increased hepatic catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) expression, and decreased malondialdehyde (MDA) levels. CAP significantly increased the relative abundances of Mucispirillum, Helicobacter, Prevotellaceae-UCG-001, Colidextribacter, unclassified-f-Oscillospiraceae, and Odoribacter, some of which were closely related to hepatic and colonic immune and oxidative markers. CAP also decreased the overall content of short-chain fatty acids, except for propionic acid. Overall, CAP can regulate the colon microbiota and exert anti-inflammatory and antioxidant effects. Whether CAP exerts its anti-inflammatory and antioxidant effects by modulating the colonic microflora, mainly Mucispirillum spp. and Helicobacter spp., requires further investigation.

3.
Foods ; 13(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928791

RESUMEN

This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1ß, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.

4.
Poult Sci ; 103(8): 103954, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909508

RESUMEN

Succinate has been shown to be a potentially beneficial nutritional supplement with a diverse range of physiological functions. However, it remains unknown whether succinate supplementation regulates lipid metabolism in chickens. The aim of this study was to explore how succinate affects fat deposition and the underlying mechanism involved in broilers and to determine the most appropriate level of succinate supplementation in the diet. A total of 640 one-day-old male yellow-feathered broilers were randomly divided into 4 groups with 8 replicates and 20 broilers per replicate. A basal diet was provided to the control group (CON). The experimental broilers were fed diets containing 0.2% (L), 0.4% (M), or 0.6% (H) succinate and the study was lasted for 21 d. The linear (l) and quadratic (q) effects of succinate addition were determined. The results indicated that supplementation with 0.4% succinate reduced ADFI, serum triglycerides (l, q; P < 0.05), glucose (q; P < 0.05), and increased high-density lipidprotein cholesterol (l, q; P < 0.05) concentrations in broilers. Moreover, 0.4% succinate affects lipid metabolism by decreasing the abdominal fat percentage and adipocyte surface area, the expression of genes that promote liposynthesis in the abdominal fat and liver, as well as increasing the expression of genes that promote lipolysis in the abdominal fat and liver. In addition, increased cecal propionic acid content (q, P < 0.05) was found in the M group compared to the CON group. The 16S rRNA sequence analysis showed that group M altered cecum microbial composition by increasing the abundance of genera such as Blautia and Sellimonas (P < 0.05). LC-MS metabolomic analysis revealed that the differential metabolites between the M and CON groups were enriched in amino acid-related pathways. In conclusion, the optimum level of succinate added to broiler diets in the present study was 0.4%. Succinate can potentially reduce fat accumulation in broilers by modulating the composition of the gut flora and amino acid metabolism related to lipid metabolism.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Ácido Succínico , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ácido Succínico/metabolismo , Ácido Succínico/administración & dosificación , Distribución Aleatoria , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA