Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Chronobiol Int ; 40(6): 759-768, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37144470

RESUMEN

Intensive care units (ICUs) may disrupt sleep. Quantitative ICU studies of concurrent and continuous sound and light levels and timings remain sparse in part due to the lack of ICU equipment that monitors sound and light. Here, we describe sound and light levels across three adult ICUs in a large urban United States tertiary care hospital using a novel sensor. The novel sound and light sensor is composed of a Gravity Sound Level Meter for sound level measurements and an Adafruit TSL2561 digital luminosity sensor for light levels. Sound and light levels were continuously monitored in the room of 136 patients (mean age = 67.0 (8.7) years, 44.9% female) enrolled in the Investigation of Sleep in the Intensive Care Unit study (ICU-SLEEP; Clinicaltrials.gov: #NCT03355053), at the Massachusetts General Hospital. The hours of available sound and light data ranged from 24.0 to 72.2 hours. Average sound and light levels oscillated throughout the day and night. On average, the loudest hour was 17:00 and the quietest hour was 02:00. Average light levels were brightest at 09:00 and dimmest at 04:00. For all participants, average nightly sound levels exceeded the WHO guideline of < 35 decibels. Similarly, mean nightly light levels varied across participants (minimum: 1.00 lux, maximum: 577.05 lux). Sound and light events were more frequent between 08:00 and 20:00 than between 20:00 and 08:00 and were largely similar on weekdays and weekend days. Peaks in distinct alarm frequencies (Alarm 1) occurred at 01:00, 06:00, and at 20:00. Alarms at other frequencies (Alarm 2) were relatively consistent throughout the day and night, with a small peak at 20:00. In conclusion, we present a sound and light data collection method and results from a cohort of critically ill patients, demonstrating excess sound and light levels across multiple ICUs in a large tertiary care hospital in the United States. ClinicalTrials.gov, #NCT03355053. Registered 28 November 2017, https://clinicaltrials.gov/ct2/show/NCT03355053.


Asunto(s)
Ritmo Circadiano , Unidades de Cuidados Intensivos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Hospitales Urbanos , Ruido , Sueño , Estados Unidos
2.
Front Netw Physiol ; 3: 1120390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926545

RESUMEN

Introduction: To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods Methods: We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients Results: We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory. We found that sleep stages predicted by HRV- and breathing-based models showed agreement in 60% of the ICU data and in 81% of the sleep laboratory data. In the ICU, deep NREM (N2 + N3) proportion of total sleep duration was reduced (ICU 39%, sleep laboratory 57%, p < 0.01), REM proportion showed heavy-tailed distribution, and the number of wake transitions per hour of sleep (median 3.6) was comparable to sleep laboratory patients with sleep-disordered breathing (median 3.9). Sleep in the ICU was also fragmented, with 38% of sleep occurring during daytime hours. Finally, patients in the ICU showed faster and less variable breathing patterns compared to sleep laboratory patients Conclusion: The cardiovascular and respiratory networks encode sleep state information, which, together with artificial intelligence methods, can be utilized to measure sleep state in the ICU.

3.
Cureus ; 15(1): e33626, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36788901

RESUMEN

Multiple myeloma (MM) typically presents as lytic bony lesions, hypercalcemia, anemia, and renal failure. Only a few cases of hyperammonemic encephalopathy (HE) attributed to multiple myeloma have been reported. We report a case of a 68-year-old Hispanic female diagnosed with multiple myeloma and presented with altered mental status and elevated ammonia levels found to have HE. The pathology behind HE is associated with higher ammonia levels produced by myeloma cell lines in the absence of liver disease. Due to the wide range of differentials for altered mental status (AMS), HE often gets missed and causes delayed treatment and the associated higher mortality. The primary treatment is chemotherapy. Lactulose and rifaximin must be initiated; however, it is ineffective if solely used. In our case, chemotherapy was not considered a treatment option in light of the patient's pancytopenia and infection. Our case is unique, as despite adequately treating other commonly suspected causes of AMS such as infection, there was no expected improvement in the patient's clinical status noticed, eventually leading to intubation due to worsening AMS. Given the patient's history of multiple myeloma, non-compliance with chemotherapy before presentation, and elevated ammonia levels raised suspicion for HE. Clinicians are encouraged to acquaint themselves with HE as a differential for patients presenting with MM flare and AMS, specifically when other potential causes of AMS are ruled out and addressed.

4.
Sleep Breath ; 27(3): 1013-1026, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35971023

RESUMEN

PURPOSE: Sleep-disordered breathing may be induced by, exacerbate, or complicate recovery from critical illness. Disordered breathing during sleep, which itself is often fragmented, can go unrecognized in the intensive care unit (ICU). The objective of this study was to investigate the prevalence, severity, and risk factors of sleep-disordered breathing in ICU patients using a single respiratory belt and oxygen saturation signals. METHODS: Patients in three ICUs at Massachusetts General Hospital wore a thoracic respiratory effort belt as part of a clinical trial for up to 7 days and nights. Using a previously developed machine learning algorithm, we processed respiratory and oximetry signals to measure the 3% apnea-hypopnea index (AHI) and estimate AH-specific hypoxic burden and periodic breathing. We trained models to predict AHI categories for 12-h segments from risk factors, including admission variables and bio-signals data, available at the start of these segments. RESULTS: Of 129 patients, 68% had an AHI ≥ 5; 40% an AHI > 15, and 19% had an AHI > 30 while critically ill. Median [interquartile range] hypoxic burden was 2.8 [0.5, 9.8] at night and 4.2 [1.0, 13.7] %min/h during the day. Of patients with AHI ≥ 5, 26% had periodic breathing. Performance of predicting AHI-categories from risk factors was poor. CONCLUSIONS: Sleep-disordered breathing and sleep apnea events while in the ICU are common and are associated with substantial burden of hypoxia and periodic breathing. Detection is feasible using limited bio-signals, such as respiratory effort and SpO2 signals, while risk factors were insufficient to predict AHI severity.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Apnea Obstructiva del Sueño/diagnóstico , Estudios Transversales , Prevalencia , Polisomnografía , Síndromes de la Apnea del Sueño/diagnóstico , Síndromes de la Apnea del Sueño/epidemiología , Hipoxia/complicaciones , Unidades de Cuidados Intensivos
5.
Crit Care Explor ; 4(1): e0611, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35072078

RESUMEN

To develop a physiologic grading system for the severity of acute encephalopathy manifesting as delirium or coma, based on EEG, and to investigate its association with clinical outcomes. DESIGN: This prospective, single-center, observational cohort study was conducted from August 2015 to December 2016 and October 2018 to December 2019. SETTING: Academic medical center, all inpatient wards. PATIENTS/SUBJECTS: Adult inpatients undergoing a clinical EEG recording; excluded if deaf, severely aphasic, developmentally delayed, non-English speaking (if noncomatose), or if goals of care focused primarily on comfort measures. Four-hundred six subjects were assessed; two were excluded due to technical EEG difficulties. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A machine learning model, with visually coded EEG features as inputs, was developed to produce scores that correlate with behavioral assessments of delirium severity (Confusion Assessment Method-Severity [CAM-S] Long Form [LF] scores) or coma; evaluated using Spearman R correlation; area under the receiver operating characteristic curve (AUC); and calibration curves. Associations of Visual EEG Confusion Assessment Method Severity (VE-CAM-S) were measured for three outcomes: functional status at discharge (via Glasgow Outcome Score [GOS]), inhospital mortality, and 3-month mortality. Four-hundred four subjects were analyzed (mean [sd] age, 59.8 yr [17.6 yr]; 232 [57%] male; 320 [79%] White; 339 [84%] non-Hispanic); 132 (33%) without delirium or coma, 143 (35%) with delirium, and 129 (32%) with coma. VE-CAM-S scores correlated strongly with CAM-S scores (Spearman correlation 0.67 [0.62-0.73]; p < 0.001) and showed excellent discrimination between levels of delirium (CAM-S LF = 0 vs ≥ 4, AUC 0.85 [0.78-0.92], calibration slope of 1.04 [0.87-1.19] for CAM-S LF ≤ 4 vs ≥ 5). VE-CAM-S scores were strongly associated with important clinical outcomes including inhospital mortality (AUC 0.79 [0.72-0.84]), 3-month mortality (AUC 0.78 [0.71-0.83]), and GOS at discharge (0.76 [0.69-0.82]). CONCLUSIONS: VE-CAM-S is a physiologic grading scale for the severity of symptoms in the setting of delirium and coma, based on visually assessed electroencephalography features. VE-CAM-S scores are strongly associated with clinical outcomes.

6.
Sleep Breath ; 26(3): 1033-1044, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34409545

RESUMEN

OBJECTIVE: Sleep-related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to detect sleep apnea automatically from a simple, easy-to-wear device. The objective was to detect abnormal respiration and estimate the Apnea-Hypopnea Index (AHI) automatically with a wearable respiratory device with and without SpO2 signals using a large (n = 412) dataset serving as ground truth. DESIGN: Simultaneously recorded polysomnography (PSG) and wearable respiratory effort data were used to train and evaluate models in a cross-validation fashion. Time domain and complexity features were extracted, important features were identified, and a random forest model was employed to detect events and predict AHI. Four models were trained: one each using the respiratory features only, a feature from the SpO2 (%)-signal only, and two additional models that use the respiratory features and the SpO2 (%) feature, one allowing a time lag of 30 s between the two signals. RESULTS: Event-based classification resulted in areas under the receiver operating characteristic curves of 0.94, 0.86, and 0.82, and areas under the precision-recall curves of 0.48, 0.32, and 0.51 for the models using respiration and SpO2, respiration-only, and SpO2-only, respectively. Correlation between expert-labelled and predicted AHI was 0.96, 0.78, and 0.93, respectively. CONCLUSIONS: A wearable respiratory effort signal with or without SpO2 signal predicted AHI accurately, and best performance was achieved with using both signals.


Asunto(s)
Síndromes de la Apnea del Sueño , Dispositivos Electrónicos Vestibles , Humanos , Oxígeno , Saturación de Oxígeno , Polisomnografía , Frecuencia Respiratoria
7.
Crit Care Med ; 50(1): e11-e19, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34582420

RESUMEN

OBJECTIVES: Delirium is a common and frequently underdiagnosed complication in acutely hospitalized patients, and its severity is associated with worse clinical outcomes. We propose a physiologically based method to quantify delirium severity as a tool that can help close this diagnostic gap: the Electroencephalographic Confusion Assessment Method Severity Score (E-CAM-S). DESIGN: Retrospective cohort study. SETTING: Single-center tertiary academic medical center. PATIENTS: Three-hundred seventy-three adult patients undergoing electroencephalography to evaluate altered mental status between August 2015 and December 2019. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We developed the E-CAM-S based on a learning-to-rank machine learning model of forehead electroencephalography signals. Clinical delirium severity was assessed using the Confusion Assessment Method Severity (CAM-S). We compared associations of E-CAM-S and CAM-S with hospital length of stay and inhospital mortality. E-CAM-S correlated with clinical CAM-S (R = 0.67; p < 0.0001). For the overall cohort, E-CAM-S and CAM-S were similar in their strength of association with hospital length of stay (correlation = 0.31 vs 0.41, respectively; p = 0.082) and inhospital mortality (area under the curve = 0.77 vs 0.81; p = 0.310). Even when restricted to noncomatose patients, E-CAM-S remained statistically similar to CAM-S in its association with length of stay (correlation = 0.37 vs 0.42, respectively; p = 0.188) and inhospital mortality (area under the curve = 0.83 vs 0.74; p = 0.112). In addition to previously appreciated spectral features, the machine learning framework identified variability in multiple measures over time as important features in electroencephalography-based prediction of delirium severity. CONCLUSIONS: The E-CAM-S is an automated, physiologic measure of delirium severity that predicts clinical outcomes with a level of performance comparable to conventional interview-based clinical assessment.


Asunto(s)
Confusión/diagnóstico , Delirio/diagnóstico , Electroencefalografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Centros Médicos Académicos/estadística & datos numéricos , Adulto , Anciano , Comorbilidad , Femenino , Mortalidad Hospitalaria/tendencias , Hospitales/estadística & datos numéricos , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Pronóstico , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
8.
Sleep ; 43(7)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-31863111

RESUMEN

STUDY OBJECTIVES: Sleep is reflected not only in the electroencephalogram but also in heart rhythms and breathing patterns. We hypothesized that it is possible to accurately stage sleep based on the electrocardiogram (ECG) and respiratory signals. METHODS: Using a dataset including 8682 polysomnograms, we develop deep neural networks to stage sleep from ECG and respiratory signals. Five deep neural networks consisting of convolutional networks and long- and short-term memory networks are trained to stage sleep using heart and breathing, including the timing of R peaks from ECG, abdominal and chest respiratory effort, and the combinations of these signals. RESULTS: ECG in combination with the abdominal respiratory effort achieved the best performance for staging all five sleep stages with a Cohen's kappa of 0.585 (95% confidence interval ±0.017); and 0.760 (±0.019) for discriminating awake vs. rapid eye movement vs. nonrapid eye movement sleep. Performance is better for younger ages, whereas it is robust for body mass index, apnea severity, and commonly used outpatient medications. CONCLUSIONS: Our results validate that ECG and respiratory effort provide substantial information about sleep stages in a large heterogeneous population. This opens new possibilities in sleep research and applications where electroencephalography is not readily available or may be infeasible.


Asunto(s)
Aprendizaje Profundo , Electrocardiografía , Respiración , Sueño , Fases del Sueño
9.
J Cell Physiol ; 233(8): 6125-6134, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29323724

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most common malignancy among oral cancers and shows potent activity for local bone invasion. Receptor activator of nuclear factor κB (RANK) ligand (RANKL) is critical for bone-resorbing osteoclast formation. We previously demonstrated that OSCC tumor cells express high levels of RANKL. In this study, confocal microscopy demonstrated RANKL specific receptor, RANK expression in OSCC tumor cell lines (SCC1, SCC12, and SCC14a). We also confirmed the expression of RANK and RANKL in primary human OSCC tumor specimens. However, regulatory mechanisms of RANKL expression and a functional role in OSCC tumor progression are unclear. Interestingly, we identified that RANKL expression is autoregulated in OSCC tumor cells. The RANKL specific inhibitor osteoprotegerin (OPG) treatment to OSCC cells inhibits autoregulation of RANKL expression. Further, we showed conditioned media from RANKL CRISPR-Cas9 knockout OSCC cells significantly decreased osteoclast formation and bone resorption activity. In addition, RANKL increases OSCC tumor cell proliferation. RANKL treatment to OSCC cells demonstrated a dose-dependent increase in RANK intracellular adaptor protein, TRAF6 expression, and activation of IKK and IκB signaling molecules. We further identified that transcription factor NFATc2 mediates autoregulation of RANKL expression in OSCC cells. Thus, our results implicate RANKL autoregulation as a novel mechanism that facilitates OSCC tumor cell growth and osteoclast differentiation/bone destruction.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Homeostasis/fisiología , Neoplasias de la Boca/metabolismo , Ligando RANK/metabolismo , Animales , Resorción Ósea/metabolismo , Huesos/efectos de los fármacos , Sistemas CRISPR-Cas/fisiología , Línea Celular Tumoral , Humanos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Transducción de Señal/fisiología , Factor 6 Asociado a Receptor de TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...